Skip to main content
Log in

Development and validation of a high-throughput and green ultra-performance convergence chromatography-tandem mass spectrometry assay for quantification of methoxy-polyethylene glycol propionic acid polymers

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

As a synthetic polymer, methoxy-polyethylene glycol propionic acid (M-PEG-PA) is widely used in the biomedicine field. Unraveling the pharmacokinetic behavior of M-PEG6-PA in vivo is crucial for evaluating the safety and efficiency of M-PEG-PA-related polymers or drug delivery systems. A high-throughput and green ultra-performance convergence chromatography-tandem mass spectrometry (UPC2-MS/MS) assay was firstly developed and validated for the determination of M-PEG6-PA polymers in a biological matrix. The MRM transition (mass to charge ratio, precursor ions→fragment ions) of m/z 367.2→118.9 was used to quantify M-PEG6-PA in this study. The throughput of the assay is high and the total running time for each sample was only 2 min. The linear range of the developed UPC2-MS/MS assay for quantification of M-PEG6-PA in a biological matrix is 0.05 to 30 μg/mL (R≥0.995). Intra-day and inter-day precisions for the determination of M-PEG6-PA by this analytical assay were <6.99%. The absolute recoveries and matrix effects of M-PEG6-PA ranged from 79.50 to 92.47% and 68.72 to 81.73%, respectively. The UPC2-MS/MS assay was successfully applied to quantify the concentrations of M-PEG6-PA polymers in rat plasma samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Ibrahim M, Ramadan E, Elsadek NE, Emam SE, Shimizu T, Ando H, et al. Polyethylene glycol (PEG): the nature, immunogenicity, and role in the hypersensitivity of PEGylated products. J Controlled Release. 2022;351:215–30. https://doi.org/10.1016/j.jconrel.2022.09.031.

    Article  CAS  Google Scholar 

  2. D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13:1257–75. https://doi.org/10.1080/17425247.2016.1182485.

    Article  CAS  PubMed  Google Scholar 

  3. EFSA Panel on Food Additives and Nutrient Sources added to Food (EFSA ANS Panel), Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, et al. Refined exposure assessment of polyethylene glycol (E 1521) from its use as a food additive. EFSA J Eur Food Saf Auth 2018;16:05293. https://doi.org/10.2903/j.efsa.2018.5293

  4. Jang HJ, Shin CY, Kim KB. Safety evaluation of polyethylene glycol (PEG) compounds for cosmetic use. Toxicol Res. 2015;31:105–36. https://doi.org/10.5487/TR.2015.31.2.105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mohamed M, Abu Lila AS, Shimizu T, Alaaeldin E, Hussein A, Sarhan HA, et al. PEGylated liposomes: immunological responses. Sci Technol Adv Mater. 2019;20:710–24. https://doi.org/10.1080/14686996.2019.1627174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Swierczewska M, Lee KC, Lee S. What is the future of PEGylated therapies? Expert Opin Emerg Drugs. 2015;20:531–6. https://doi.org/10.1517/14728214.2015.1113254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Molineux G. Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treat Rev. 2002;28(Suppl A):13–6. https://doi.org/10.1016/s0305-7372(02)80004-4.

    Article  CAS  PubMed  Google Scholar 

  8. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8:543–57. https://doi.org/10.1038/nmat2442.

    Article  CAS  PubMed  Google Scholar 

  9. Firdessa R, Oelschlaeger TA, Moll H. Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: relevance for drug delivery systems. Eur J Cell Biol. 2014;93:323–37. https://doi.org/10.1016/j.ejcb.2014.08.001.

    Article  CAS  PubMed  Google Scholar 

  10. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5:505–15. https://doi.org/10.1021/mp800051m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bai MY, Liu SZ. A simple and general method for preparing antibody-PEG-PLGA sub-micron particles using electrospray technique: an in vitro study of targeted delivery of cisplatin to ovarian cancer cells. Colloids Surf B Biointerfaces. 2014;117:346–53. https://doi.org/10.1016/j.colsurfb.2014.02.051.

    Article  CAS  PubMed  Google Scholar 

  12. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2:214–21. https://doi.org/10.1038/nrd1033.

    Article  CAS  PubMed  Google Scholar 

  13. Seedher N, Bhatia S. Solubility enhancement of Cox-2 inhibitors using various solvent systems. AAPS PharmSciTech. 2003;4:E33. https://doi.org/10.1208/pt040333.

    Article  CAS  PubMed  Google Scholar 

  14. Xiao F, Wang Z, Li W, Qi W, Bai X, Xu H. Cefepime-modified magnetic nanoparticles and enzymatic colorimetry for the detection of Listeria monocytogenes in lettuces. Food Chem. 2023;409: 135296. https://doi.org/10.1016/j.foodchem.2022.135296.

    Article  CAS  PubMed  Google Scholar 

  15. Soltani S, Sereshti H. A green alternative QuEChERS developed based on green deep eutectic solvents coupled with gas chromatography-mass spectrometry for the analysis of pesticides in tea samples. Food Chem. 2022;380:132181. https://doi.org/10.1016/j.foodchem.2022.132181.

    Article  CAS  PubMed  Google Scholar 

  16. Zamani R, Pilehvar-Soltanahmadi Y, Alizadeh E, Zarghami N. Macrophage repolarization using emu oil-based electrospun nanofibers: possible application in regenerative medicine. Artif Cells Nanomed Biotechnol. 2018;46:1258–65. https://doi.org/10.1080/21691401.2017.1367689.

    Article  CAS  PubMed  Google Scholar 

  17. Ge J, Chen L, Huang B, Gao Y, Zhou D, Zhou Y, et al. Anchoring group-mediated radiolabeling of inorganic nanoparticles─a universal method for constructing nuclear medicine imaging nanoprobes. ACS Appl Mater Interfaces. 2022;14:8838–46. https://doi.org/10.1021/acsami.1c23907.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang P, Sun F, Hung HC, Jain P, Leger KJ, Jiang S. Sensitive and quantitative detection of anti-poly(ethylene glycol) (PEG) antibodies by methoxy-PEG-coated surface plasmon resonance sensors. Anal Chem. 2017;89:8217–22. https://doi.org/10.1021/acs.analchem.7b02447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stone CA, Liu Y, Relling MV, Krantz MS, Pratt AL, Abreo A, et al. Immediate hypersensitivity to polyethylene glycols and polysorbates: more common than we have recognized. J Allergy Clin Immunol Pract. 2019;7:1533-1540.e8. https://doi.org/10.1016/j.jaip.2018.12.003.

    Article  PubMed  Google Scholar 

  20. D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13:1257–75. https://doi.org/10.3390/molecules26051435.

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Kao WJ. Synthesis of polyethylene glycol (PEG) derivatives and PEGylated-peptide biopolymer conjugates. Biomacromolecules. 2003;4:1055–67. https://doi.org/10.1021/bm034069l.

    Article  CAS  PubMed  Google Scholar 

  22. Jambo H, Dispas A, Hubert C, Lecomte F, Ziemons É, Hubert P. Generic SFC-MS methodology for the quality control of vitamin D3 oily formulations. J Pharm Biomed Anal. 2022;209:114492. https://doi.org/10.1016/j.jpba.2021.114492.

    Article  CAS  PubMed  Google Scholar 

  23. Bahmany S, Abdulla A, Ewoldt TMJ, Oehlers PL, de Winter BCM, Koch BCP. High-throughput analysis for the simultaneous quantification of nine beta-lactam antibiotics in human plasma by UPC2-MS/MS: method development, validation, and clinical application. J Pharm Biomed Anal. 2022;219:114904. https://doi.org/10.1016/j.jpba.2022.114904.

    Article  CAS  PubMed  Google Scholar 

  24. Wang S, Qi P, Di S, Wang J, Wu S, Wang X, et al. Significant role of supercritical fluid chromatography - mass spectrometry in improving the matrix effect and analytical efficiency during multi-pesticides residue analysis of complex chrysanthemum samples. Anal Chim Acta. 2019;1074:108–16. https://doi.org/10.1016/j.aca.2019.04.063.

    Article  CAS  PubMed  Google Scholar 

  25. Yang F, Tang G, Liu S, Fan Z, Wang Y, Deng H, et al. Ultra-performance convergence chromatography with tandem mass spectrometry-assisted method for rapid enantioseparation and determination of fluazifop-butyl in tobacco and soil. Chirality. 2019;31:353–61. https://doi.org/10.1002/chir.23062.

    Article  CAS  PubMed  Google Scholar 

  26. Yang Z, Xu X, Sun L, Zhao X, Wang H, Fawcett JP, et al. Development and validation of an enantioselective SFC-MS/MS method for simultaneous separation and quantification of oxcarbazepine and its chiral metabolites in beagle dog plasma. J Chromatogr B. 2016;1020:36–42. https://doi.org/10.1016/j.jchromb.2016.03.013.

    Article  CAS  Google Scholar 

  27. Kaza M, Karazniewicz-Lada M, Kosicka K, Siemiatkowska A, Rudzki PJ. Bioanalytical method validation: new FDA guidance vs. EMA guideline. Better or worse? J Pharm Biomed Anal. 2019;165:381–5.

    CAS  PubMed  Google Scholar 

  28. Pena-Pereira F, Wojnowski W, Tobiszewski M. AGREE—Analytical GREEnness Metric approach and software. Anal Chem. 2020;92:10076–82. https://doi.org/10.1021/acs.analchem.0c01887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manousi N, Wojnowski W, Płotka-Wasylka J, Samanidou V. Blue Applicability Grade Index (BAGI) and software: a new tool for the evaluation of method practicality. Green Chem. 2023;25:7598–604. https://doi.org/10.1039/D3GC02347H.

    Article  CAS  Google Scholar 

  30. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM). Bioanalytical method validation guidance for industry. 2018. http://www.fda.gov/media/70858/download. Accessed 15 Jan 2024.

  31. European Medicines Agency. Guideline on bioanalytical method validation. 2011. http://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf. Accessed 15 Jan 2024.

  32. Zhou X, Meng X, Cheng L, Su C, Sun Y, Sun L, et al. Development and application of an MSALL-based approach for the quantitative analysis of linear polyethylene glycols in rat plasma by liquid chromatography triple-quadrupole/time-of-flight mass spectrometry. Anal Chem. 2017;89:5193–200. https://doi.org/10.1021/acs.analchem.6b04058.

    Article  CAS  PubMed  Google Scholar 

  33. Hyldbakk A, Hansen T, Hak S, Borgos SEF. Polyethylene glycol (PEG) as a broad applicability marker for LC–MS/MS-based biodistribution analysis of nanomedicines. J Contr Release. 2024;366:611–20. https://doi.org/10.1016/j.jconrel.2024.01.016.

    Article  CAS  Google Scholar 

  34. Shi M, Jiang H, Yin L, Liu Y, Xu M. Development of an UPLC-MS/MS method coupled with in-source CID for quantitative analysis of PEG-PLA copolymer and its application to a pharmacokinetic study in rats. J Chromatogr B. 2019;1125:121716. https://doi.org/10.1016/j.jchromb.2019.121716.

    Article  CAS  Google Scholar 

  35. Shi M, Zheng X, Ge Y, Zhang N, Yu L, Duan X, et al. Unraveling the cytotoxicity and cellular uptake of low, medium and high molecular weight polyethylene glycol polymers in MCF-7 cells by green UPLC-MS/MS methods. J Pharm Biomed Anal. 2024;238: 115868. https://doi.org/10.1016/j.jpba.2023.115868.

    Article  CAS  PubMed  Google Scholar 

  36. Ge Y, Zhang N, Zheng X, Yu L, Liu Y, Xue H, et al. Ultra-high-performance liquid chromatography with tandem mass spectrometry method for cellular toxicity and pharmacokinetic study of PEG1K polymers. J Sep Sci. 2024;47:2300802. https://doi.org/10.1002/jssc.202300802.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos: DUT23YG228, DUT24MS018).

Author information

Authors and Affiliations

Authors

Contributions

Chunpeng Feng: writing—original draft, review and editing, methodology, formal analysis, data curation, conceptualization. Jiye Tian: formal analysis, data curation. Qisheng Fang: formal analysis, data curation, writing—review and editing. Yajie Cheng: sample preparation. Yue Deng: sample preparation. Jiarui Zhang: sample preparation. Shuang Feng: validation. Qingbin Wang: project administration. Hecheng Wang: writing—review and editing. Xuan Zhao: project administration. Lei Yin: writing—review and editing, supervision funding acquisition, conceptualization, formal analysis, project administration, investigation.

Corresponding authors

Correspondence to Hecheng Wang, Xuan Zhao or Lei Yin.

Ethics declarations

Declarations

Three female rats (200±20 g) were obtained from Liaoning Changsheng Biotechnology Co., Ltd. Animal welfare and experimental procedures were performed according to the Guidance for the Care and Use of Laboratory Animals of the National Research Council of USA 1996 and related ethical regulations of Dalian University of Technology.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 314 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, C., Tian, J., Fang, Q. et al. Development and validation of a high-throughput and green ultra-performance convergence chromatography-tandem mass spectrometry assay for quantification of methoxy-polyethylene glycol propionic acid polymers. Anal Bioanal Chem (2025). https://doi.org/10.1007/s00216-025-05849-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-025-05849-5

Keywords