Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms driving the immunoregulatory function of cancer cells

Abstract

Tumours display an astonishing variation in the spatial distribution, composition and activation state of immune cells, which impacts their progression and response to immunotherapy. Shedding light on the mechanisms that govern the diversity and function of immune cells in the tumour microenvironment will pave the way for the development of more tailored immunomodulatory strategies for the benefit of patients with cancer. Cancer cells, by virtue of their paracrine and juxtacrine communication mechanisms, are key contributors to intertumour heterogeneity in immune contextures. In this Review, we discuss how cancer cell-intrinsic features, including (epi)genetic aberrations, signalling pathway deregulation and altered metabolism, play a key role in orchestrating the composition and functional state of the immune landscape, and influence the therapeutic benefit of immunomodulatory strategies. Moreover, we highlight how targeting cancer cell-intrinsic parameters or their downstream immunoregulatory pathways is a viable strategy to manipulate the tumour immune milieu in favour of antitumour immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of how cancer cell-intrinsic parameters regulate immune cell behaviour.
Fig. 2: Cancer genotype–immunophenotype relationships.
Fig. 3: Cancer cell-intrinsic epigenetic regulation of the cancer cell–immune cell crosstalk.
Fig. 4: Cancer cell-intrinsic signalling dictates the tumour immune microenvironment.
Fig. 5: Metabolic reprogramming of cancer cells affects immune behaviour.

Similar content being viewed by others

References

  1. Anderson, N. M. & Simon, M. C. The tumor microenvironment. Curr. Biol. 30, R921–R925 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garner, H. & de Visser, K. E. Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nat. Rev. Immunol. 20, 483–497 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 21, 298–312 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. He, X. & Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 30, 660–669 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Angelova, M. et al. Evolution of metastases in space and time under immune selection. Cell 175, 751–765 e716 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Gonzalez, H., Hagerling, C. & Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 32, 1267–1284 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palucka, A. K. & Coussens, L. M. The basis of oncoimmunology. Cell 164, 1233–1247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Eggermont, A. M. M. et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N. Engl. J. Med. 378, 1789–1801 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Robert, C. et al. Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. J. Clin. Oncol. 36, 1668–1674 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Bejarano, L., Jordao, M. J. C. & Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11, 933–959 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Davis-Marcisak, E. F. et al. From bench to bedside: single-cell analysis for cancer immunotherapy. Cancer Cell 39, 1062–1080 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, N. et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nieto, P. et al. A single-cell tumor immune atlas for precision oncology. Genome Res. 31, 1913–1926 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39, 1578–1593 e1578 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Xiao, Y. et al. Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer. Clin. Cancer Res. 25, 5002–5014 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830 e814 (2018). By integrating major immunogenomics methods to characterize the immune TME, this study demonstrates the extent of interpatient heterogeneity in the immune landscape in patients with solid tumours, and how identifying the immune subtype of a tumour can play an important role in predicting disease outcome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanchez-Vega, F. et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 173, 321–337 e310 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wellenstein, M. D. & de Visser, K. E. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 48, 399–416 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Mardis, E. R. Neoantigens and genome instability: impact on immunogenomic phenotypes and immunotherapy response. Genome Med. 11, 71 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tijhuis, A. E., Johnson, S. C. & McClelland, S. E. The emerging links between chromosomal instability (CIN), metastasis, inflammation and tumour immunity. Mol. Cytogenet. 12, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hong, C. et al. cGAS-STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature 607, 366–373 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Bakhoum, S. F. & Cantley, L. C. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174, 1347–1360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cristescu, R. et al. Tumor mutational burden predicts the efficacy of pembrolizumab monotherapy: a pan-tumor retrospective analysis of participants with advanced solid tumors. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-003091 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science https://doi.org/10.1126/science.aaf8399 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614 e514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weiss, G. J. et al. Tumor cell-free DNA copy number instability predicts therapeutic response to immunotherapy. Clin. Cancer Res. 23, 5074–5081 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Marcus, L. et al. FDA approval summary: pembrolizumab for the treatment of tumor mutational burden-high solid tumors. Clin. Cancer Res. 27, 4685–4689 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Spranger, S. & Gajewski, T. F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer 18, 139–147 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, N. et al. KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunol. Immunother. 66, 1175–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coelho, M. A. et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47, 1083–1099 e1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hamarsheh, S., Gross, O., Brummer, T. & Zeiser, R. Immune modulatory effects of oncogenic KRAS in cancer. Nat. Commun. 11, 5439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, C. et al. The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett. 470, 95–105 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Sparmann, A. & Bar-Sagi, D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6, 447–458 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Wislez, M. et al. High expression of ligands for chemokine receptor CXCR2 in alveolar epithelial neoplasia induced by oncogenic Kras. Cancer Res. 66, 4198–4207 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Sunaga, N. et al. Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer. Int. J. Cancer 130, 1733–1744 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Caetano, M. S. et al. IL6 blockade reprograms the lung tumor microenvironment to limit the development and progression of K-ras-mutant lung cancer. Cancer Res. 76, 3189–3199 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pylayeva-Gupta, Y., Lee, K. E., Hajdu, C. H., Miller, G. & Bar-Sagi, D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21, 836–847 (2012). This study provides evidence that the immunoregulatory effects of driver mutations contribute to the earliest steps of tumorigenesis by demonstrating that oncogenic activation of KRAS induces GM-CSF production and subsequent recruitment of myeloid cells that drive the initiation of pancreatic neoplasia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng, H. et al. KrasG12D mutation contributes to regulatory T cell conversion through activation of the MEK/ERK pathway in pancreatic cancer. Cancer Lett. 446, 103–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Canon, J. et al. The clinical KRASG12C inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Liao, W. et al. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell 35, 559–572 e557 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Casey, S. C. et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352, 227–231 (2016). This study describes how the transcription factor MYC suppresses antitumour immune responses by binding directly to the promoters of the immunoregulatory molecules CD47 and PDL1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sodir, N. M. et al. Endogenous Myc maintains the tumor microenvironment. Genes Dev. 25, 907–916 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shchors, K. et al. The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta. Genes Dev. 20, 2527–2538 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kortlever, R. M. et al. Myc cooperates with Ras by programming inflammation and immune suppression. Cell 171, 1301–1315 e1314 (2017). This study demonstrates how the oncogenes Myc and Kras cooperate to shape an immunosuppressive and tumour-promoting immune landscape.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Muthalagu, N. et al. Repression of the type I interferon pathway underlies MYC- and KRAS-dependent evasion of NK and B cells in pancreatic ductal adenocarcinoma. Cancer Discov. 10, 872–887 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zimmerli, D. et al. MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling. Nat. Commun. 13, 6579 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Whitfield, J. R. & Soucek, L. The long journey to bring a Myc inhibitor to the clinic. J. Cell Biol. https://doi.org/10.1083/jcb.202103090 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Han, H. et al. Small-molecule MYC inhibitors suppress tumor growth and enhance immunotherapy. Cancer Cell 36, 483–497 e415 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Garrido, P. et al. Canakinumab with and without pembrolizumab in patients with resectable non-small-cell lung cancer: CANOPY-N study design. Future Oncol. 17, 1459–1472 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Kumagai, S., Koyama, S. & Nishikawa, H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat. Rev. Cancer 21, 181–197 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Roelands, J. et al. Oncogenic states dictate the prognostic and predictive connotations of intratumoral immune response. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-000617 (2020). This study demonstrates that the prognostic impact and predictive value of immune phenotypes in tumours is dependent on the expression of specific signalling pathways.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Le, X. et al. Characterization of the immune landscape of EGFR-mutant NSCLC identifies CD73/adenosine pathway as a potential therapeutic target. J. Thorac. Oncol. 16, 583–600 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Sugiyama, E. et al. Blockade of EGFR improves responsiveness to PD-1 blockade in EGFR-mutated non-small cell lung cancer. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aav3937 (2020).

    Article  PubMed  Google Scholar 

  63. Maruyama, T. et al. Inverse correlation of HER2 with MHC class I expression on oesophageal squamous cell carcinoma. Br. J. Cancer 103, 552–559 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Okita, R. et al. HER2/HER3 signaling regulates NK cell-mediated cytotoxicity via MHC class I chain-related molecule A and B expression in human breast cancer cell lines. J. Immunol. 188, 2136–2145 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Herrmann, F. et al. HER-2/neu-mediated regulation of components of the MHC class I antigen-processing pathway. Cancer Res. 64, 215–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Wu, S. et al. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity. Nat. Cell Biol. 21, 1027–1040 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Swain, S. M. et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med. 372, 724–734 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bang, Y. J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Triulzi, T. et al. HER2 signaling regulates the tumor immune microenvironment and trastuzumab efficacy. Oncoimmunology 8, e1512942 (2019).

    Article  PubMed  Google Scholar 

  71. Park, S. et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18, 160–170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Loi, S. et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b-2 trial. Lancet Oncol. 20, 371–382 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Rha, S. Y. et al. A multi-institutional phase Ib/II trial of first-line triplet regimen (Pembrolizumab, Trastuzumab, Chemotherapy) for HER2-positive advanced gastric and gastroesophageal junction cancer (PANTHERA Trial): molecular profiling and clinical update. J. Clin. Oncol. 39, 218–218 (2021).

    Article  Google Scholar 

  74. Janjigian, Y. Y. et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 600, 727–730 (2021). This study provides the results of the phase III KEYNOTE-811 trial in patients with HER2+ advanced gastric or gastro-oesophageal junction adenocarcinoma, showing that the addition of pembrolizumab therapy to trastuzumab therapy and chemotherapy markedly reduces tumour size and significantly improves clinical outcome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Blagih, J., Buck, M. D. & Vousden, K. H. p53, cancer and the immune response. J. Cell Sci. https://doi.org/10.1242/jcs.237453 (2020).

    Article  PubMed  Google Scholar 

  76. Kastenhuber, E. R. & Lowe, S. W. Putting p53 in context. Cell 170, 1062–1078 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pilley, S., Rodriguez, T. A. & Vousden, K. H. Mutant p53 in cell-cell interactions. Genes Dev. 35, 433–448 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wellenstein, M. D. et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature 572, 538–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bezzi, M. et al. Diverse genetic-driven immune landscapes dictate tumor progression through distinct mechanisms. Nat. Med. 24, 165–175 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Blagih, J. et al. Cancer-specific loss of p53 leads to a modulation of myeloid and T cell responses. Cell Rep. 30, 481–496 e486 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Aschauer, L. & Muller, P. A. Novel targets and interaction partners of mutant p53 gain-of-function. Biochem. Soc. Trans. 44, 460–466 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Cooks, T. et al. Mutant p53 prolongs NF-kappaB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 23, 634–646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Siolas, D., Vucic, E., Kurz, E., Hajdu, C. & Bar-Sagi, D. Gain-of-function p53(R172H) mutation drives accumulation of neutrophils in pancreatic tumors, promoting resistance to immunotherapy. Cell Rep. 36, 109578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ghosh, M. et al. Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell 39, 494–508 e495 (2021). This study demonstrates how gain-of-function mutations in p53 can interfere with the function of the cytoplasmic DNA-sensing pathway cGAS–STING–TBK1–IRF3 and activate an innate immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dong, Z. Y. et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin. Cancer Res. 23, 3012–3024 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Deniger, D. C. et al. T-cell responses to TP53 “hotspot” mutations and unique neoantigens expressed by human ovarian cancers. Clin. Cancer Res. 24, 5562–5573 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Malekzadeh, P. et al. Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J. Clin. Invest. 129, 1109–1114 (2019).

    Article  PubMed  Google Scholar 

  88. Malekzadeh, P. et al. Antigen experienced T cells from peripheral blood recognize p53 neoantigens. Clin. Cancer Res. 26, 1267–1276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Koyama, S. et al. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res. 76, 999–1008 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Skoulidis, F. et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 8, 822–835 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, H. et al. AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1+ CD8 T cells. Cell Rep. Med. 3, 100554 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vidotto, T. et al. Emerging role of PTEN loss in evasion of the immune response to tumours. Br. J. Cancer 122, 1732–1743 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Peng, W. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6, 202–216 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Lin, Z. et al. PTEN loss correlates with T cell exclusion across human cancers. BMC Cancer 21, 429 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mittendorf, E. A. et al. PD-L1 expression in triple-negative breast cancer. Cancer Immunol. Res. 2, 361–370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dong, Y. et al. PTEN functions as a melanoma tumor suppressor by promoting host immune response. Oncogene 33, 4632–4642 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Song, M. et al. PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS ONE 8, e65821 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lastwika, K. J. et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res. 76, 227–238 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Ying, H. et al. PTEN is a major tumor suppressor in pancreatic ductal adenocarcinoma and regulates an NF-kappaB-cytokine network. Cancer Discov. 1, 158–169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Garcia, A. J. et al. Pten null prostate epithelium promotes localized myeloid-derived suppressor cell expansion and immune suppression during tumor initiation and progression. Mol. Cell Biol. 34, 2017–2028 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Barroso-Sousa, R. et al. Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer. Clin. Cancer Res. 26, 2565–2572 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chida, K. et al. A low tumor mutational burden and PTEN mutations are predictors of a negative response to PD-1 blockade in MSI-H/dMMR gastrointestinal tumors. Clin. Cancer Res. 27, 3714–3724 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Zhu, S. et al. Synergistic antitumor activity of pan-PI3K inhibition and immune checkpoint blockade in bladder cancer. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-002917 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Manzano, R. G., Catalan-Latorre, A. & Brugarolas, A. RB1 and TP53 co-mutations correlate strongly with genomic biomarkers of response to immunity checkpoint inhibitors in urothelial bladder cancer. BMC Cancer 21, 432 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Knudsen, E. S., Pruitt, S. C., Hershberger, P. A., Witkiewicz, A. K. & Goodrich, D. W. Cell cycle and beyond: exploiting new RB1 controlled mechanisms for cancer therapy. Trends Cancer 5, 308–324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xu, Y. P. et al. Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy. J. Clin. Invest. 129, 4316–4331 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sznurkowski, J. J., Zawrocki, A. & Biernat, W. Local immune response depends on p16INK4a status of primary tumor in vulvar squamous cell carcinoma. Oncotarget 8, 46204–46210 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chabanon, R. M. et al. Targeting the DNA damage response in immuno-oncology: developments and opportunities. Nat. Rev. Cancer https://doi.org/10.1038/s41568-021-00386-6 (2021).

    Article  PubMed  Google Scholar 

  109. Germano, G., Amirouchene-Angelozzi, N., Rospo, G. & Bardelli, A. The clinical impact of the genomic landscape of mismatch repair-deficient cancers. Cancer Discov. 8, 1518–1528 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Dolcetti, R. et al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am. J. Pathol. 154, 1805–1813 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guidoboni, M. et al. Microsatellite instability and high content of activated cytotoxic lymphocytes identify colon cancer patients with a favorable prognosis. Am. J. Pathol. 159, 297–304 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kim, J. Y., Kim, W. G., Kwon, C. H. & Park, D. Y. Differences in immune contextures among different molecular subtypes of gastric cancer and their prognostic impact. Gastric Cancer 22, 1164–1175 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Pakish, J. B. et al. Immune microenvironment in microsatellite-instable endometrial cancers: hereditary or sporadic origin matters. Clin. Cancer Res. 23, 4473–4481 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Smyrk, T. C., Watson, P., Kaul, K. & Lynch, H. T. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 91, 2417–2422 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Llosa, N. J. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 5, 43–51 (2015). This article demonstrates a link between MSI and the expression of immune checkpoint molecules in the TME, providing multiple therapeutic targets for MMR-defective colorectal carcinomas.

    Article  CAS  PubMed  Google Scholar 

  116. Sahin, I. H. et al. Immune checkpoint inhibitors for the treatment of MSI-H/MMR-D colorectal cancer and a perspective on resistance mechanisms. Br. J. Cancer 121, 809–818 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Germano, G. et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 552, 116–120 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Lu, C. et al. DNA sensing in mismatch repair-deficient tumor cells is essential for anti-tumor immunity. Cancer Cell 39, 96–108 e106 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Moynahan, M. E. & Jasin, M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat. Rev. Mol. Cell Biol. 11, 196–207 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ma, J., Setton, J., Lee, N. Y., Riaz, N. & Powell, S. N. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nat. Commun. 9, 3292 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bruand, M. et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 36, 109412 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Heijink, A. M. et al. BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis factor-alpha-mediated cytotoxicity. Nat. Commun. 10, 100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. van Vugt, M. & Parkes, E. E. When breaks get hot: inflammatory signaling in BRCA1/2-mutant cancers. Trends Cancer https://doi.org/10.1016/j.trecan.2021.12.003 (2022).

    Article  PubMed  Google Scholar 

  125. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, J. et al. Metastasis and immune evasion from extracellular cGAMP hydrolysis. Cancer Discov. 11, 1212–1227 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Mehta, A. K. et al. Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nat. Cancer 2, 66–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Samstein, R. M. et al. Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. Nat. Cancer 1, 1188–1203 (2021). This study demonstrates that mutations in BRCA1 and BRCA2 result in unique mutational landscapes, distinct tumour–immune microenvironments and differential ICB responses.

    Article  PubMed  Google Scholar 

  129. Pantelidou, C. et al. PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov. 9, 722–737 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Jung, H. et al. DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load. Nat. Commun. 10, 4278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Emran, A. A. et al. Targeting DNA methylation and EZH2 activity to overcome melanoma resistance to immunotherapy. Trends Immunol. 40, 328–344 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Asgarova, A. et al. PD-L1 expression is regulated by both DNA methylation and NF-kB during EMT signaling in non-small cell lung carcinoma. Oncoimmunology 7, e1423170 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gevensleben, H. et al. PD-L1 promoter methylation is a prognostic biomarker for biochemical recurrence-free survival in prostate cancer patients following radical prostatectomy. Oncotarget 7, 79943–79955 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Goltz, D., Gevensleben, H., Dietrich, J. & Dietrich, D. PD-L1 (CD274) promoter methylation predicts survival in colorectal cancer patients. Oncoimmunology 6, e1257454 (2017).

    Article  PubMed  Google Scholar 

  136. Saleh, R., Toor, S. M., Sasidharan Nair, V. & Elkord, E. Role of epigenetic modifications in inhibitory immune checkpoints in cancer development and progression. Front. Immunol. 11, 1469 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Luo, N. et al. DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer. Nat. Commun. 9, 248 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Falahat, R. et al. Epigenetic reprogramming of tumor cell-intrinsic STING function sculpts antigenicity and T cell recognition of melanoma. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2013598118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Nishida, J. et al. Epigenetic remodelling shapes inflammatory renal cancer and neutrophil-dependent metastasis. Nat. Cell Biol. 22, 465–475 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Pirozzi, C. J. & Yan, H. The implications of IDH mutations for cancer development and therapy. Nat. Rev. Clin. Oncol. 18, 645–661 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Berghoff, A. S. et al. Correlation of immune phenotype with IDH mutation in diffuse glioma. Neuro Oncol. 19, 1460–1468 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kohanbash, G. et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J. Clin. Invest. 127, 1425–1437 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Richardson, L. G. et al. IDH-mutant gliomas harbor fewer regulatory T cells in humans and mice. Oncoimmunology 9, 1806662 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Amankulor, N. M. et al. Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Dev. 31, 774–786 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Klemm, F. et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell 181, 1643–1660 e1617 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Alghamri, M. S. et al. G-CSF secreted by mutant IDH1 glioma stem cells abolishes myeloid cell immunosuppression and enhances the efficacy of immunotherapy. Sci. Adv. 7, eabh3243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Platten, M. et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 592, 463–468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Schumacher, T. et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512, 324–327 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Richardson, L. G. et al. Implications of IDH mutations on immunotherapeutic strategies for malignant glioma. Neurosurg. Focus 52, E6 (2022).

    Article  PubMed  Google Scholar 

  151. Audia, J. E. & Campbell, R. M. Histone modifications and cancer. Cold Spring Harb. Perspect. Biol. 8, a019521 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Lehmann, B. D. et al. Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nat. Commun. 12, 6276 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015). This study provides mechanistic evidence that epigenetic silencing of chemokines drives immune evasion and suggests that treatment with epigenetic modulators can reverse this process to increase immunotherapy efficacy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Serresi, M. et al. Polycomb repressive complex 2 is a barrier to KRAS-driven inflammation and epithelial-mesenchymal transition in non-small-cell lung cancer. Cancer Cell 29, 17–31 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Li, J. et al. Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy. J. Clin. Invest. 130, 2712–2726 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lu, J., He, X., Zhang, L., Zhang, R. & Li, W. Acetylation in tumor immune evasion regulation. Front. Pharmacol. https://doi.org/10.3389/fphar.2021.771588 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Fan, P. et al. Overexpressed histone acetyltransferase 1 regulates cancer immunity by increasing programmed death-ligand 1 expression in pancreatic cancer. J. Exp. Clin. Cancer Res. 38, 47 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zheng, H. et al. HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin. Cancer Res. 22, 4119–4132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Woods, D. M. et al. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol. Res. 3, 1375–1385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kim, K. et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl Acad. Sci. USA 111, 11774–11779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Orillion, A. et al. Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma. Clin. Cancer Res. 23, 5187–5201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gray, J. E. et al. Phase I/Ib study of pembrolizumab plus vorinostat in advanced/metastatic non-small cell lung cancer. Clin. Cancer Res. 25, 6623–6632 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yang, L., Li, A., Lei, Q. & Zhang, Y. Tumor-intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment. J. Hematol. Oncol. 12, 125 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Owen, K. L., Brockwell, N. K. & Parker, B. S. JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression. Cancers 11, 2002 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Vaddi, K. in Immunotherapy for Gastrointestinal Cancer (eds Kerr, D. & Johnson, R.) 147–186 (Springer International Publishing, 2017).

  167. Welte, T. et al. Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat. Cell Biol. 18, 632–644 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Loi, S. et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin. Cancer Res. 22, 1499–1509 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Hendrickx, W. et al. Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis. Oncoimmunology 6, e1253654 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Dushyanthen, S. et al. Agonist immunotherapy restores T cell function following MEK inhibition improving efficacy in breast cancer. Nat. Commun. 8, 606 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gomez-Aleza, C. et al. Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells. Nat. Commun. 11, 6335 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Luke, J. J., Bao, R., Sweis, R. F., Spranger, S. & Gajewski, T. F. WNT/beta-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res. 25, 3074–3083 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015). This study shows that cancer cell-intrinsic activation of the WNT–β-catenin signalling pathway drives T cell exclusion and ICB resistance in melanoma.

    Article  CAS  PubMed  Google Scholar 

  174. Takeuchi, Y. et al. Highly immunogenic cancer cells require activation of the WNT pathway for immunological escape. Sci. Immunol. 6, eabc6424 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Ruiz de Galarreta, M. et al. beta-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 9, 1124–1141 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Nusse, R. & Clevers, H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Kato, S. et al. Gain-of-function genetic alterations of G9a drive oncogenesis. Cancer Discov. 10, 980–997 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. David, C. J. & Massague, J. Contextual determinants of TGFbeta action in development, immunity and cancer. Nat. Rev. Mol. Cell Biol. 19, 419–435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Batlle, E. & Massague, J. Transforming growth factor-beta signaling in immunity and cancer. Immunity 50, 924–940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. van den Bulk, J., de Miranda, N. & Ten Dijke, P. Therapeutic targeting of TGF-beta in cancer: hacking a master switch of immune suppression. Clin. Sci. 135, 35–52 (2021).

    Article  Google Scholar 

  181. Bagati, A. et al. Integrin alphavbeta6-TGFbeta-SOX4 pathway drives immune evasion in triple-negative breast cancer. Cancer Cell 39, 54–67 e59 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. AlHossiny, M. et al. Ly6E/K signaling to TGFbeta promotes breast cancer progression, immune escape, and drug resistance. Cancer Res. 76, 3376–3386 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Moo-Young, T. A. et al. Tumor-derived TGF-β mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer. J. Immunother. 32, 12–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. Tran, D. Q., Ramsey, H. & Shevach, E. M. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 110, 2983–2990 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sakaguchi, S., Miyara, M., Costantino, C. M. & Hafler, D. A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10, 490–500 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Kitamura, T. et al. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat. Genet. 39, 467–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Wasserman, I. et al. SMAD4 Loss in colorectal cancer patients correlates with recurrence, loss of immune infiltrate, and chemoresistance. Clin. Cancer Res. 25, 1948–1956 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Tauriello, D. V. F., Sancho, E. & Batlle, E. Overcoming TGFbeta-mediated immune evasion in cancer. Nat. Rev. Cancer 22, 25–44 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Ni, Y. et al. High TGF-beta signature predicts immunotherapy resistance in gynecologic cancer patients treated with immune checkpoint inhibition. NPJ Precis. Oncol. 5, 101 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Miller, L. D. et al. Immunogenic subtypes of breast cancer delineated by gene classifiers of immune responsiveness. Cancer Immunol. Res. 4, 600–610 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Taniguchi, K. & Karin, M. NF-kappaB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18, 309–324 (2018).

    Article  CAS  PubMed  Google Scholar 

  192. Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Antonangeli, F. et al. Regulation of PD-L1 expression by NF-kappaB in cancer. Front. Immunol. 11, 584626 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bouillez, A. et al. MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene 36, 4037–4046 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Maeda, T. et al. MUC1-C induces PD-L1 and immune evasion in triple-negative breast cancer. Cancer Res. 78, 205–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  196. Du, F. et al. MRTF-A-NF-kappaB/p65 axis-mediated PDL1 transcription and expression contributes to immune evasion of non-small-cell lung cancer via TGF-beta. Exp. Mol. Med. 53, 1366–1378 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhou, Y. et al. Activation of NF-kappaB and p300/CBP potentiates cancer chemoimmunotherapy through induction of MHC-I antigen presentation. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2025840118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Muz, B., de la Puente, P., Azab, F. & Azab, A. K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 3, 83–92 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Barsoum, I. B., Smallwood, C. A., Siemens, D. R. & Graham, C. H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 74, 665–674 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Chen, B., Li, L., Li, M. & Wang, X. HIF1A expression correlates with increased tumor immune and stromal signatures and aggressive phenotypes in human cancers. Cell Oncol. 43, 877–888 (2020).

    Article  CAS  Google Scholar 

  201. Lequeux, A. et al. Targeting HIF-1 alpha transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy. Oncogene 40, 4725–4735 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Triner, D. et al. Epithelial hypoxia-inducible factor 2alpha facilitates the progression of colon tumors through recruiting neutrophils. Mol. Cell. Biol. https://doi.org/10.1128/MCB.00481-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Labiano, S., Palazon, A. & Melero, I. Immune response regulation in the tumor microenvironment by hypoxia. Semin. Oncol. 42, 378–386 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863–875 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Martinez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Tian, H. et al. Successive high-resolution (H2O)n-GCIB and C60-SIMS imaging integrates multi-omics in different cell types in breast cancer tissue. Anal. Chem. 93, 8143–8151 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Xiao, Z., Dai, Z. & Locasale, J. W. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat. Commun. 10, 3763 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Cascone, T. et al. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 27, 977–987 e974 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591, 645–651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Kumagai, S. et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell 40, 201–218 e209 (2022). This study, together with Watson et al. (2021), demonstrates not only that high glucose consumption by cancer cells deprives effector T cells of nutrients but also that the glycolytic by-product lactic acid metabolically supports the function of immunosuppressive Treg cells.

    Article  CAS  PubMed  Google Scholar 

  212. Husain, Z., Huang, Y., Seth, P. & Sukhatme, V. P. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J. Immunol. 191, 1486–1495 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. Chen, P. et al. Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis. Proc. Natl Acad. Sci. USA 114, 580–585 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014). This study shows how tumour-derived lactic acid induces the expression of VEGF and the M2-like polarization of tumour-associated macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Reinfeld, B. I. et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 593, 282–288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Edwards, D. N. et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J. Clin. Invest. https://doi.org/10.1172/JCI140100 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Oh, M. H. et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Invest. 130, 3865–3884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V. & Madabhushi, A. Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16, 703–715 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Kaltenbacher, T. et al. CRISPR somatic genome engineering and cancer modeling in the mouse pancreas and liver. Nat. Protoc. 17, 1142–1188 (2022).

    Article  CAS  PubMed  Google Scholar 

  220. Lima, A. & Maddalo, D. SEMMs: somatically engineered mouse models. A new tool for in vivo disease modeling for basic and translational research. Front. Oncol. 11, 667189 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  221. van der Weyden, L., Jonkers, J. & Adams, D. J. The use of CRISPR/Cas9-based gene editing strategies to explore cancer gene function in mice. Curr. Opin. Genet. Dev. 66, 57–62 (2021).

    Article  PubMed  Google Scholar 

  222. Andre, T. et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 383, 2207–2218 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04317105 (2020).

  224. Nobs, S. P. & Kopf, M. Tissue-resident macrophages: guardians of organ homeostasis. Trends Immunol. 42, 495–507 (2021).

    Article  CAS  PubMed  Google Scholar 

  225. Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Szabo, P. A. et al. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nat. Commun. 10, 4706 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Vijay, J. et al. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat. Metab. 2, 97–109 (2020).

    Article  PubMed  Google Scholar 

  228. Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297 e1218 (2020).

    Article  CAS  PubMed  Google Scholar 

  229. Muhl, L. et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat. Commun. 11, 3953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Pao, W. et al. Tissue-specific immunoregulation: a call for better understanding of the “Immunostat” in the context of cancer. Cancer Discov. 8, 395–402 (2018).

    Article  CAS  PubMed  Google Scholar 

  231. Pitt, J. M. et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity 44, 1255–1269 (2016).

    Article  CAS  PubMed  Google Scholar 

  232. Kwon, H. et al. Androgen conspires with the CD8+ T cell exhaustion program and contributes to sex bias in cancer. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abq2630 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Sayaman, R. W. et al. Germline genetic contribution to the immune landscape of cancer. Immunity 54, 367–386 e368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. McDowell, S. A. C. et al. Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. Nat. Cancer 2, 545–562 (2021).

    Article  CAS  PubMed  Google Scholar 

  236. Ringel, A. E. et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 183, 1848–1866 e1826 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Pingili, A. K. et al. Immune checkpoint blockade reprograms systemic immune landscape and tumor microenvironment in obesity-associated breast cancer. Cell Rep. 35, 109285 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Wang, Z. et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 25, 141–151 (2019).

    Article  CAS  PubMed  Google Scholar 

  239. An, Y. et al. Association between body mass index and survival outcomes for cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. J. Transl. Med. 18, 235 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Erbe, R. et al. Evaluating the impact of age on immune checkpoint therapy biomarkers. Cell Rep. 37, 110033 (2021).

    Article  CAS  PubMed  Google Scholar 

  241. de la Iglesia, J. V. et al. Effects of tobacco smoking on the tumor immune microenvironment in head and neck squamous cell carcinoma. Clin. Cancer Res. 26, 1474–1485 (2020).

    Article  PubMed  Google Scholar 

  242. Yang, H. et al. Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity. Nat. Med. 25, 1428–1441 (2019).

    Article  CAS  PubMed  Google Scholar 

  243. Cullin, N., Azevedo Antunes, C., Straussman, R., Stein-Thoeringer, C. K. & Elinav, E. Microbiome and cancer. Cancer Cell 39, 1317–1341 (2021).

    Article  CAS  PubMed  Google Scholar 

  244. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Zitvogel, L., Ma, Y., Raoult, D., Kroemer, G. & Gajewski, T. F. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science 359, 1366–1370 (2018).

    Article  CAS  PubMed  Google Scholar 

  246. Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  249. Sun, X. et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion. Nature 599, 673–678 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Schaaf, M. B., Garg, A. D. & Agostinis, P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 9, 115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ford, K. et al. NOX4 inhibition potentiates immunotherapy by overcoming cancer-associated fibroblast-mediated CD8 T-cell exclusion from tumors. Cancer Res. 80, 1846–1860 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Kieffer, Y. et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 10, 1330–1351 (2020).

    Article  CAS  PubMed  Google Scholar 

  254. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Mariathasan, S. et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Coffelt, S. B. & de Visser, K. E. Immune-mediated mechanisms influencing the efficacy of anticancer therapies. Trends Immunol. 36, 198–216 (2015).

    Article  CAS  PubMed  Google Scholar 

  257. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  258. Weichselbaum, R. R., Liang, H., Deng, L. & Fu, Y. X. Radiotherapy and immunotherapy: a beneficial liaison. Nat. Rev. Clin. Oncol. 14, 365–379 (2017).

    Article  CAS  PubMed  Google Scholar 

  259. Bracci, L., Schiavoni, G., Sistigu, A. & Belardelli, F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 21, 15–25 (2014).

    Article  CAS  PubMed  Google Scholar 

  260. Adamstein, N. H. et al. The neutrophil-lymphocyte ratio and incident atherosclerotic events: analyses from five contemporary randomized trials. Eur. Heart J. 42, 896–903 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Ridker, P. M. et al. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article  CAS  PubMed  Google Scholar 

  262. Dominiak, A., Chelstowska, B., Olejarz, W. & Nowicka, G. Communication in the cancer microenvironment as a target for therapeutic interventions. Cancers https://doi.org/10.3390/cancers12051232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Zhou, J. X., Taramelli, R., Pedrini, E., Knijnenburg, T. & Huang, S. Extracting intercellular signaling network of cancer tissues using ligand-receptor expression patterns from whole-tumor and single-cell transcriptomes. Sci. Rep. 7, 8815 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Tkach, M. & Thery, C. Communication by extracellular vesicles: where we are and where we need to go. Cell 164, 1226–1232 (2016).

    Article  CAS  PubMed  Google Scholar 

  265. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Poggio, M. et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177, 414–427 e413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Theodoraki, M. N., Yerneni, S. S., Hoffmann, T. K., Gooding, W. E. & Whiteside, T. L. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients. Clin. Cancer Res. 24, 896–905 (2018).

    Article  CAS  PubMed  Google Scholar 

  268. Yang, Y. et al. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 28, 862–864 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Zhang, X. et al. Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. Mol. Cancer 17, 146 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Ye, L. et al. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1+ regulatory B cell expansion. J. Immunother. Cancer 6, 145 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Morrissey, S. M. et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab. 33, 2040–2058 e2010 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Takasaka, N. et al. Integrin alphavbeta8-expressing tumor cells evade host immunity by regulating TGF-beta activation in immune cells. JCI Insight https://doi.org/10.1172/jci.insight.122591 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Mereiter, S., Balmana, M., Campos, D., Gomes, J. & Reis, C. A. Glycosylation in the era of cancer-targeted therapy: where are we heading? Cancer Cell 36, 6–16 (2019).

    Article  CAS  PubMed  Google Scholar 

  275. Hofmann, F. et al. Cx43-Gap junctions accumulate at the cytotoxic immunological synapse enabling cytotoxic T lymphocyte melanoma cell killing. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20184509 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Tittarelli, A. et al. Gap junction intercellular communications regulate NK cell activation and modulate NK cytotoxic capacity. J. Immunol. 192, 1313–1319 (2014).

    Article  CAS  PubMed  Google Scholar 

  277. Brabletz, T., Kalluri, R., Nieto, M. A. & Weinberg, R. A. EMT in cancer. Nat. Rev. Cancer 18, 128–134 (2018).

    Article  CAS  PubMed  Google Scholar 

  278. Dongre, A. et al. Epithelial-to-mesenchymal transition contributes to immunosuppression in breast carcinomas. Cancer Res. 77, 3982–3989 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Knab, V. M. et al. Triple-negative breast cancer cells rely on kinase-independent functions of CDK8 to evade NK-cell-mediated tumor surveillance. Cell Death Dis. 12, 991 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Santisteban, M. et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 69, 2887–2895 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Wang, G. et al. The pan-cancer landscape of crosstalk between epithelial-mesenchymal transition and immune evasion relevant to prognosis and immunotherapy response. NPJ Precis. Oncol. 5, 56 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Faget, D. V., Ren, Q. & Stewart, S. A. Unmasking senescence: context-dependent effects of SASP in cancer. Nat. Rev. Cancer 19, 439–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  283. Ruscetti, M. et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 362, 1416–1422 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Iannello, A., Thompson, T. W., Ardolino, M., Lowe, S. W. & Raulet, D. H. p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J. Exp. Med. 210, 2057–2069 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    Article  CAS  PubMed  Google Scholar 

  287. Toso, A. et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 9, 75–89 (2014).

    Article  CAS  PubMed  Google Scholar 

  288. Wang, L., Lankhorst, L. & Bernards, R. Exploiting senescence for the treatment of cancer. Nat. Rev. Cancer https://doi.org/10.1038/s41568-022-00450-9 (2022).

    Article  PubMed  Google Scholar 

  289. Saleh, T. et al. Therapy-induced senescence: an “old” friend becomes the enemy. Cancers https://doi.org/10.3390/cancers12040822 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Eggert, T. et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 30, 533–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Munoz, D. P. et al. Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging. JCI Insight https://doi.org/10.1172/jci.insight.124716 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Santana-Codina, N., Mancias, J. D. & Kimmelman, A. C. The role of autophagy in cancer. Annu. Rev. Cancer Biol. 1, 19–39 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Janji, B. et al. The multifaceted role of autophagy in tumor evasion from immune surveillance. Oncotarget 7, 17591–17607 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Baginska, J. et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc. Natl Acad. Sci. USA 110, 17450–17455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Mgrditchian, T. et al. Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent manner. Proc. Natl Acad. Sci. USA 114, E9271–E9279 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Ladoire, S. et al. The presence of LC3B puncta and HMGB1 expression in malignant cells correlate with the immune infiltrate in breast cancer. Autophagy 12, 864–875 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Kim, S. et al. Radiation-induced autophagy potentiates immunotherapy of cancer via up-regulation of mannose 6-phosphate receptor on tumor cells in mice. Cancer Immunol. Immunother. 63, 1009–1021 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Ramakrishnan, R. et al. Autophagy induced by conventional chemotherapy mediates tumor cell sensitivity to immunotherapy. Cancer Res. 72, 5483–5493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the K.E.d.V. laboratory is funded by the Netherlands Organization for Scientific Research (grant NWO-VICI 91819616), the Dutch Cancer Society (KWF10623, KWF13191 and KWF14339) and the Oncode Institute. The authors thank K. Kos, D. Duits, H. Garner and C. Burrello for their insightful input and all members of the K.E.d.V. laboratory for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed substantially to discussion of the content and wrote the article. K.E.d.V. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Karin E. de Visser.

Ethics declarations

Competing interests

K.E.d.V. reports research funding from Roche/Genentech and is a consultant for Macomics. A.v.W. declares no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Davide Bedognetti, who co-reviewed with Jessica Roelands; Hiroyoshi Nishikawa; and Stefani Spranger for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Autophagy

An intracellular recycling process that selectively degrades damaged proteins, lipids, nucleic acids, metabolites and organelles to maintain cell homeostasis and viability.

Cancer immune landscape

The composition, location, phenotype and functional state of immune cells in tumours.

Cancer immunotherapy

Therapeutic interventions that activate or suppress aspects of the immune system, including immune checkpoint blockade, to treat cancer.

Cytotoxic T lymphocytes

(CTLs). A group of antigen-specific T cells that have the capacity to directly target and destroy cells that express the cognate antigen on their surface, presented by major histocompatibility complex molecules.

Exosomes

Small endosomal-derived lipid bilayer membrane vesicles that carry cargo to target cells they encounter, which results in reprograming of recipient cells distal from their release.

Extracellular vesicles

Small lipid-enclosed vesicles, including microvesicles, exosomes and apoptotic bodies, that carry cellular cargo such as DNA, RNA, protein or lipids that can be taken up by other cells, where the release of the extracellular vesicle cargo can modulate cell function.

Immune checkpoint molecules

Co-stimulatory or co-inhibitory receptors and their ligands that exert stimulatory or inhibitory effects, respectively, on immune responses and that function as ‘gatekeepers’ by balancing immune cell activation and inhibition.

Immune escape

A variety of strategies that are exploited by cancer cells to avoid discovery and destruction by the immune system.

Microsatellites

Short sequences of DNA (one to ten nucleotides) that are tandemly repeated in the genome.

Myeloid-derived suppressor cells

(MDSCs). A heterogeneous population of myeloid cells, consisting of (immature) monocytic and neutrophilic cells with immunosuppressive capacities.

Polarization

A state of functional activation of a myeloid immune cell in response to specific environmental and tumour-derived signals to induce, for example, the immunostimulatory M1-like or immunosuppressive M2-like polarization of macrophages.

Tumour microenvironment

(TME). The environment around the tumour, that besides cancer cells is composed of a large diversity of host cells, including immune cells, fibroblasts and endothelial cells, as well as extracellular matrix components, blood vessels and signalling molecules, such as chemokines, cytokines and growth factors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Weverwijk, A., de Visser, K.E. Mechanisms driving the immunoregulatory function of cancer cells. Nat Rev Cancer 23, 193–215 (2023). https://doi.org/10.1038/s41568-022-00544-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00544-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer