Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A guide to interrogating immunometabolism

Abstract

The metabolic charts memorized in early biochemistry courses, and then later forgotten, have come back to haunt many immunologists with new recognition of the importance of these pathways. Metabolites and the activity of metabolic pathways drive energy production, macromolecule synthesis, intracellular signalling, post-translational modifications and cell survival. Immunologists who identify a metabolic phenotype in their system are often left wondering where to begin and what does it mean? Here, we provide a framework for navigating and selecting the appropriate biochemical techniques to explore immunometabolism. We offer recommendations for initial approaches to develop and test metabolic hypotheses and how to avoid common mistakes. We then discuss how to take things to the next level with metabolomic approaches, such as isotope tracing and genetic approaches. By proposing strategies and evaluating the strengths and weaknesses of different methodologies, we aim to provide insight, note important considerations and discuss ways to avoid common misconceptions. Furthermore, we highlight recent studies demonstrating the power of these metabolic approaches to uncover the role of metabolism in immunology. By following the framework in this Review, neophytes and seasoned investigators alike can venture into the emerging realm of cellular metabolism and immunity with confidence and rigour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A general immunometabolism workflow.
Fig. 2: A guide to using extracellular flux assays for glycolysis.
Fig. 3: A guide to examination of oxidative phosphorylation and mitochondrial function by extracellular flux assays.
Fig. 4: Metabolomics workflow.

Similar content being viewed by others

References

  1. Murphy, M. P. & O’Neill, L. A. J. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell 174, 780–784 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Fan, J., Krautkramer, K. A., Feldman, J. L. & Denu, J. M. Metabolic regulation of histone post-translational modifications. ACS Chem. Biol. 10, 95–108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cameron, A. M., Lawless, S. J. & Pearce, E. J. Metabolism and acetylation in innate immune cell function and fate. Semin. Immunol. 28, 408–416 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Mason, E. F. & Rathmell, J. C. Cell metabolism: an essential link between cell growth and apoptosis. Biochem. Biophys. Acta 1813, 645–654 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Voss, K., Larsen, S. E. & Snow, A. L. Metabolic reprogramming and apoptosis sensitivity: Defining the contours of a T cell response. Cancer Lett. 408, 190–196 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Green, D. R., Galluzzi, L. & Kroemer, G. Metabolic control of cell death. Science 345, 1457–1465 (2014).

    Article  CAS  Google Scholar 

  7. Kim, B. et al. Discovery of widespread host protein interactions with the pre-replicated genome of CHIKV Using VIR-CLASP. Mol. Cell 78, 624–640 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lv, Y., Tariq, M., Guo, X., Kanwal, S. & Esteban, M. A. Intricacies in the cross talk between metabolic enzymes, RNA, and protein translation. J. Mol. Cell Biol. 11, 813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tristan, C., Shahani, N., Sedlak, T. W. & Sawa, A. The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal. 23, 317–323 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Pollizzi, K. N. & Powell, J. D. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat. Rev. Immunol. 14, 435–446 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jellusova, J. Cross-talk between signal transduction and metabolism in B cells. Immunol. Lett. 201, 1–13 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Zasłona, Z. & O’Neill, L. A. J. Cytokine-like roles for metabolites in immunity. Mol. Cell 78, 814–823 (2020).

    Article  PubMed  CAS  Google Scholar 

  13. Baj, A. et al. Glutamatergic signaling along the microbiota-gut-brain axis. Int. J. Mol. Sci. 20, 1482 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  14. Baumann, T. et al. Regulatory myeloid cells paralyze T cells through cell–cell transfer of the metabolite methylglyoxal. Nat. Immunol. 21, 555–566 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Johnson, M. O., Siska, P. J., Contreras, D. C. & Rathmell, J. C. Nutrients and the microenvironment to feed a T cell army. Semin. Immunol. 28, 505–513 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boothby, M. & Rickert, R. C. Metabolic regulation of the immune humoral response. Immunity 46, 743–755 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gerriets, V. A. & Rathmell, J. C. Metabolic pathways in T cell fate and function. Trends Immunol. 33, 168–173 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnson, M. O. et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175, 1780–1795 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jung, J., Zeng, H. & Horng, T. Metabolism as a guiding force for immunity. Nat. Cell Biol. 21, 85–93 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, J. & Zhang, Q. Using seahorse machine to measure OCR and ECAR in cancer cells. Methods Mol. Biol. 1928, 353–363 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. van der Windt, G. J. W., Chang, C. H. & Pearce, E. L. Measuring bioenergetics in T cells using a seahorse extracellular flux analyzer. Curr. Prot. Immunol. 113, 16B.1–16B.14 (2016).

    Google Scholar 

  22. Pelgrom, L. R., van der Ham, A. J. & Everts, B. Analysis of TLR-induced metabolic changes in dendritic cells using the Seahorse XFe96 extracellular flux analyzer. Methods Mol. Biol. 1390, 273–285 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Mookerjee, S. A., Nicholls, D. G. & Brand, M. D. Determining maximum glycolytic capacity using extracellular flux measurements. PLoS ONE 11, e0152016 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mookerjee, S. A. & Brand, M. D. Measurement and analysis of extracellular acid production to determine glycolytic rate. J. Vis. Exp. 106, 53464 (2015).

    Google Scholar 

  25. Raud, B. et al. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab. 28, 504–515.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mookerjee, S. A., Gerencser, A. A., Nicholls, D. G. & Brand, M. D. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J. Biol. Chem. 292, 7189–7207 (2017). This is a helpful in-depth discussion of using extracellular flux assays and proper interpretation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Newling, M. et al. C-reactive protein promotes inflammation through FcγR-induced glycolytic reprogramming of human macrophages. J. Immunol. 203, 225–235 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Saini, V. et al. Hydrogen sulfide stimulates Mycobacterium tuberculosis respiration, growth and pathogenesis. Nat. Commun. 11, 557 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Franco da Cunha, F. et al. Extracellular vesicles isolated from mesenchymal stromal cells modulate CD4+ T lymphocytes toward a regulatory profile. Cells 9, 1059 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  30. Curtis, K. D. et al. Glycogen metabolism supports early glycolytic reprogramming and activation in dendritic cells in response to both TLR and Syk-dependent CLR agonists. Cells 9, 715 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  31. Mookerjee, S. A., Goncalves, R. L. S., Gerencser, A. A., Nicholls, D. G. & Brand, M. D. The contributions of respiration and glycolysis to extracellular acid production. Biochim. Biophys. Acta 1847, 171–181 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Little, A. C. et al. High-content fluorescence imaging with the metabolic flux assay reveals insights into mitochondrial properties and functions. Commun. Biol. 3, 271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun, S., Li, H., Chen, J. & Qian, Q. Lactic acid: no longer an inert and end-product of glycolysis. Physiology 32, 453–463 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Menk, A. V. et al. Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep. 22, 1509–1521 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pelletier, M., Billingham, L. K., Ramaswamy, M. & Siegel, R. M. Extracellular flux analysis to monitor glycolytic rates and mitochondrial oxygen consumption. Methods Enzymol. 542, 125–149 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. di Cara, F. et al. Peroxisomes in immune response and inflammation. Int. J. Mol. Sci. 20, 3877 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  37. Nordgren, M. & Fransen, M. Peroxisomal metabolism and oxidative stress. Biochimie 98, 56–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Shi, L. & Tu, B. P. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr. Opin. Cell Biol. 33, 125–131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brooks, G. A. Cell-cell and intracellular lactate shuttles. J. Phys. 587, 5591–5600 (2009).

    CAS  Google Scholar 

  40. Wang, H. et al. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat. Immunol. 21, 298–308 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ma, E. H. et al. Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8+ T cells. Immunity 51, 856–870.e5 (2019). This paper illustrates the power of 13C tracing to define metabolic pathways in vivo and shows that CD8+ T cells use glucose primarily for biosynthetic pathways rather than conversion into lactate.

    Article  CAS  PubMed  Google Scholar 

  42. Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Binek, A. et al. Flow cytometry has a significant impact on the cellular metabolome. J. Prot. Res. 18, 169–181 (2019).

    CAS  Google Scholar 

  44. Llufrio, E. M., Wang, L., Naser, F. J. & Patti, G. J. Sorting cells alters their redox state and cellular metabolome. Redox Biol. 16, 381–387 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, G. et al. Dissecting the human immune system with single cell RNA sequencing technology. J. Leukoc. Biol. 107, 613–623 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, H., Ye, F. & Guo, G. Revolutionizing immunology with single-cell RNA sequencing. Cell. Mol. Immunol. 16, 242–249 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hartmann, F. J. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. 39, 186–197 (2021). This paper demonstrates the potential of high-dimensional profiling of metabolic proteins in single cells to define metabolic phenotypes.

    Article  CAS  PubMed  Google Scholar 

  49. Subrahmanyam, P. B. & Maecker, H. T. CyTOF measurement of immunocompetence across major immune cell types. Curr. Protoc. Cytom. 82, 9.54.1–9.54.12 (2017).

    Google Scholar 

  50. Hartmann, F. J. & Bendall, S. C. Immune monitoring using mass cytometry and related high- dimensional imaging approaches. Nat. Rev. Rheum. 16, 87–99 (2020).

    Article  Google Scholar 

  51. Artyomov, M. N. & van den Bossche, J. Immunometabolism in the single-cell era. Cell Metab. 32, 710–725 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xue, M., Wei, W., Su, Y., Johnson, D. & Heath, J. R. Supramolecular probes for assessing glutamine uptake enable semi- quantitative metabolic models in single cells. J. Am. Chem. Soc. 138, 3085–3093 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Siska, P. J. et al. Fluorescence-based measurement of cystine uptake through xCT shows requirement for ROS detoxification in activated lymphocytes. J. Immunol. Methods 438, 51–58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sinclair, L. V, Barthelemy, C. & Cantrell, D. A. Single cell glucose uptake assays: a cautionary tale. Immunometabolism 2, e200029 (2020). This paper highlights the contradictory results that can be obtained using fluorescent analogues of glucose to measure glucose uptake.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Evers, T. M. J. et al. Deciphering metabolic heterogeneity by single-cell analysis. Anal. Chem. 91, 13314–13323 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, L. & Vertes, A. Single-cell mass spectrometry approaches to explore cellular heterogeneity. Angew Chem. Int. Ed. 57, 4466–4477 (2018).

    Article  CAS  Google Scholar 

  57. Galler, K. et al. Making a big thing of a small cell-recent advances in single cell analysis. Analyst 139, 1237–1273 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Siska, P. J. et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight 2, e93411 (2017).

    Article  PubMed Central  Google Scholar 

  59. Beckermann, K. E. et al. CD28 costimulation drives tumor-infiltrating T cell glycolysis to promote inflammation. JCI Insight 5, e138729 (2020).

    Article  PubMed Central  Google Scholar 

  60. Yucel, N. et al. Glucose metabolism drives histone acetylation landscape transitions that dictate muscle stem cell function. Cell Rep. 27, 3939–3955.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Karmaus, P. W. F. et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature 565, 101–105 (2019). This study uses scRNA-seq to define in vivo metabolic phenotypes for pathogenic and stem TH17 cells.

    Article  CAS  PubMed  Google Scholar 

  62. Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of TH17 cell pathogenicity. Cell 163, 1400–1412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163, 1413–1427 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kimmey, S. C., Borges, L., Baskar, R. & Bendall, S. C. Parallel analysis of tri-molecular biosynthesis with cell identity and function in single cells. Nat. Commun. 10, 1185 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ahl, P. J. et al. Met-Flow, a strategy for single-cell metabolic analysis highlights dynamic changes in immune subpopulations. Commun. Biol. 3, 305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xiao, Z., Dai, Z. & Locasale, J. W. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat. Commun. 10, 1–12 (2019).

    Article  CAS  Google Scholar 

  67. Jang, C., Chen, L. & Rabinowitz, J. D. Metabolomics and isotope tracing. Cell 173, 822–837 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yuan, M. et al. Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC–MS/MS. Nat. Protoc. 14, 313–330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Buescher, J. M. et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34, 189–201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rinschen, M. M., Ivanisevic, J., Giera, M. & Siuzdak, G. Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 20, 353–367 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Patti, G. J., Yanes, O. & Siuzdak, G. Innovation: metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13, 263–269 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gu, H., Zhang, P., Zhu, J. & Raftery, D. Globally optimized targeted mass spectrometry: reliable metabolomics analysis with broad coverage. Anal. Chem. 87, 12355–12362 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sindelar, M. & Patti, G. J. Chemical discovery in the era of metabolomics. J. Am. Chem. Soc. 142, 9097–9105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gallart-Ayala, H., Teav, T. & Ivanisevic, J. Metabolomics meets lipidomics: assessing the small molecule component of metabolism. BioEssays 42, 2000052 (2020).

    Article  Google Scholar 

  75. Lu, W. et al. Metabolite measurement: pitfalls to avoid and practices to follow. Annu. Rev. Biochem. 86, 277–304 (2017). A helpful guide for navigating metabolomics of water-soluble metabolites, comparing the strengths and weaknesses of liquid chromatography–tandem mass spectrometry, gas chromatography–mass spectrometry and NMR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee, H. J., Kremer, D. M., Sajjakulnukit, P., Zhang, L. & Lyssiotis, C. A. A large-scale analysis of targeted metabolomics data from heterogeneous biological samples provides insights into metabolite dynamics. Metabolomics 15, 103 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015).

    Article  PubMed  Google Scholar 

  78. Blagih, J. et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses invivo. Immunity 42, 41–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Geiger, R. et al. l-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Balmer, M. L. et al. Memory CD8+ T cells require increased concentrations of acetate induced by stress for optimal function. Immunity. 44, 1312–1324 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Balmer, M. L. et al. Memory CD8+ T cells balance pro- and anti-inflammatory activity by reprogramming cellular acetate handling at sites of infection. Cell Metab. 32, 457–467.e5 (2020). This study demonstrates that alternative fuels such as acetate can play key roles in T cell function in infection.

    Article  CAS  PubMed  Google Scholar 

  82. Bian, Y. et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature 585, 277–282 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roy, D. G. et al. Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming. Cell Metab. 31, 250–266.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Ron-Harel, N. et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 24, 104–117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ma, E. H. et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Niedenführ, S., Wiechert, W. & Nöh, K. How to measure metabolic fluxes: a taxonomic guide for 13C fluxomics. Curr. Opin. Biotechnol. 34, 82–90 (2015).

    Article  PubMed  CAS  Google Scholar 

  87. Oruganty, K., Campit, S. E., Mamde, S., Lyssiotis, C. A. & Chandrasekaran, S. Common biochemical properties of metabolic genes recurrently dysregulated in tumors. Cancer Metab. 8, 5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Llufrio, E. M., Cho, K. & Patti, G. J. Systems-level analysis of isotopic labeling in untargeted metabolomic data by X13CMS. Nat. Protoc. 14, 1970–1990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guijas, C., Montenegro-Burke, J. R., Warth, B., Spilker, M. E. & Siuzdak, G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat. Biotechnol. 36, 316–320 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Forsberg, E. M. et al. Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online. Nat. Protoc. 13, 633–651 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Voss, K., Luthers, C. R., Pohida, K. & Snow, A. L. Fatty acid synthase contributes to restimulation-induced cell death of human CD4 T cells. Front. Mol. Biosci. 6, 106 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jia, Y. et al. Hyperactive PI3Kδ predisposes naive T cells to activation via aerobic glycolysis programs. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-020-0379-x (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bibby, J. A. et al. Cholesterol metabolism drives regulatory B cell IL-10 through provision of geranylgeranyl pyrophosphate. Nat. Commun. 11, 3412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Webster, D. E., Roulland, S. & Phelan, J. D. Protocols for CRISPR-Cas9 screening in lymphoma cell lines. Methods Mol. Biol. 1956, 337–350 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Sanjana, N. E. Genome-scale CRISPR pooled screens. Anal. Biochem. 532, 95–99 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. LaFleur, M. W. et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat. Commun. 10, 1668 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Bailis, W. et al. Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function. Nature 571, 403–407 (2019). These two papers use in vivo pooled CRISPR gene targeting in forward genetic screens to identify key metabolic genes in haematopoietic cells and demonstrate crucial roles for mitochondrial metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rossiter, N. J. et al. CRISPR screens in physiologic medium reveal conditionally essential genes in human cells. Cell Metab. https://doi.org/10.1016/j.cmet.2021.02.005 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wroblewska, A. et al. Protein barcodes enable high-dimensional single-cell CRISPR screens. Cell 175, 1141–1155.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Phan, A. T. et al. Constitutive glycolytic metabolism supports CD8+ T cell effector memory differentiation during viral infection. Immunity 45, 1024–1037 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Raud, B., McGuire, P. J., Jones, R. G., Sparwasser, T. & Berod, L. Fatty acid metabolism in CD8+ T cell memory: challenging current concepts. Immunol. Rev. 283, 213–231 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gerriets, V. A. et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 17, 1459–1466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Waters, L. R., Ahsan, F. M., Wolf, D. M., Shirihai, O. & Teitell, M. A. Initial B cell activation induces metabolic reprogramming and mitochondrial remodeling. iScience 5, 99–109 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Franchi, L. et al. Inhibiting oxidative phosphorylation in vivo restrains Th17 effector responses and ameliorates murine colitis. J. Immunol. 198, 2735–2746 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Glick, G. D. et al. Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease. J. Pharm. Exp. Ther. 351, 298–307 (2014).

    Article  CAS  Google Scholar 

  107. Reinfeld, B. I. et al. Cell programmed nutrient partitioning in the tumor microenvironment. Nature https://doi.org/10.1038/s41586-021-03442-1 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Reid, M. A., Dai, Z. & Locasale, J. W. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19, 1298–1306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tyrakis, P. A. et al. S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature 540, 236–241 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xu, T. et al. Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature 548, 228–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Weinberg, S. E. et al. Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature 565, 495–499 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Franco, F., Jaccard, A., Romero, P., Yu, Y. R. & Ho, P. C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2, 1001–1012 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863–875 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019). This study demonstrates that glutamine restrains differentiation of TH1 and cytotoxic T cells, and a broad inhibitor of glutamine metabolism can enhance antitumour immunotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bader, J. E., Voss, K. & Rathmell, J. C. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol. Cell 78, 1019–1033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Halbrook, C. J. & Lyssiotis, C. A. Employing metabolism to improve the diagnosis and treatment of pancreatic cancer. Cancer Cell 31, 5–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Wang, T. et al. Inosine is an alternative carbon source for CD8+-T-cell function under glucose restriction. Nat. Metab. 2, 635–647 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Kurniawan, H. et al. Glutathione restricts serine metabolism to preserve regulatory T cell function. Cell Metab. 5, 920–936.e7 (2020).

    Article  CAS  Google Scholar 

  122. Halbrook, C. J. et al. Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab. 29, 1390–1399.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Maj, T. et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol. 36, 272–281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bordbar, A., Monk, J. M., King, Z. A. & Palsson, B. O. Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15, 107–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Lagziel, S., Gottlieb, E. & Shlomi, T. Mind your media. Nat. Metab. 2, 1369–1372 (2020).

    Article  PubMed  Google Scholar 

  127. Ackermann, T. & Tardito, S. Cell culture medium formulation and its implications in cancer metabolism. Trends Cancer 5, 329–332 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Voorde, J. vande et al. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci. Adv. 5, eaau7314 (2019).

    Article  CAS  Google Scholar 

  129. antor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272.e17 (2017). This study illustrates the value of physiological media for in vitro metabolic studies as an approach to more closely model in vivo metabolism.

    Article  CAS  Google Scholar 

  130. Leney-Greene, M. A., Boddapati, A. K., Su, H. C., Cantor, J. R. & Lenardo, M. J. Human plasma-like medium improves T lymphocyte activation. iScience 23, 100759 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Ferrick, D. A., Neilson, A. & Beeson, C. Advances in measuring cellular bioenergetics using extracellular flux. Drug Disc. Today 13, 268–274 (2008).

    Article  CAS  Google Scholar 

  132. Xu, H. et al. Influence of various medium environment to in vitro human T cell culture. In Vitro Cell. Dev. Biol. Anim. 54, 559–566 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Sato, K. et al. Impact of culture medium on the expansion of T cells for immunotherapy. Cytotherapy 11, 936–946 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Medvec, A. R. et al. Improved expansion and in vivo function of patient T cells by a serum-free medium. Mol. Ther. Methods Clin. Dev. 8, 65–74 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Chan, G., Kleinheinz, T., Peterson, D. & Moffat, J. A simple high-content cell cycle assay reveals frequent discrepancies between cell number and ATP and MTS proliferation assays. PLoS ONE 8, e63583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank C. Deeter and K. V. Tormos at Agilent for helpful resources and discussion.

Funding

This work was supported by T32 DK101003 (K.V.), T32 DK094775 (H.S.H), K00 CA234920 (J.E.B.), T32 GM007347 (A.S.), 1R37CA237421, R01CA248160, R01CA244931 (C.A.L.) and R01 CA217987 and R01 DK105550 (J.C.R.).

Author information

Authors and Affiliations

Authors

Contributions

K.V. conceptualized the review and wrote the first draft. H.S.H. wrote the metabolomics section and contributed considerably to revisions. J.E.B. and A.S. contributed intellectually to the review, wrote some portions of the review and assisted with edits. C.A.L. and J.C.R. supervised and edited the manuscript.

Corresponding author

Correspondence to Jeffrey C. Rathmell.

Ethics declarations

Competing interests

J.C.R. holds stock equity in Sitryx and within the past 2 years has received unrelated research support, travel and honoraria from Incyte, Sitryx, Caribou, Nirogy, Kadmon, Calithera, Tempest, Merck, Mitobridge and Pfizer. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks N. Chandel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Microbiota–gut–brain axis

The network that enables bidirectional communication between gut bacteria and the brain.

Electrochemical gradient

A gradient of electrochemical potential; in the case of the mitochondrion, to enable protons to move across the inner mitochondrial membrane.

Anaplerotic pathway

Metabolic pathway, the activity of which replenishes pools of intermediates of the tricarboxylic acid cycle, which can also serve as precursors for other anabolic processes.

Fragmentation state

The status of elongated or fused mitochondria versus smaller mitochondria as a result of fission.

Metabolons

Non-covalent complexes of metabolic enzymes in a metabolic pathway, resulting in increased spatiotemporal efficiency.

Metabolome

The complete set of metabolites present in a cell, biological fluid or tissue sample.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voss, K., Hong, H.S., Bader, J.E. et al. A guide to interrogating immunometabolism. Nat Rev Immunol 21, 637–652 (2021). https://doi.org/10.1038/s41577-021-00529-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00529-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing