. Earth Science News .
WATER WORLD
Study reveals uncertainty in how much carbon the ocean absorbs over time
by Jennifer Chu for MIT News
Boston MA (SPX) Apr 06, 2021

One of the first photographs of a sediment trap sample shows pellets, aggregates, and shells that make up sinking "marine snow."

The ocean's "biological pump" describes the many marine processes that work to take up carbon dioxide from the atmosphere and transport it deep into the ocean, where it can remain sequestered for centuries. This ocean pump is a powerful regulator of atmospheric carbon dioxide and an essential ingredient in any global climate forecast.

But a new MIT study points to a significant uncertainty in the way the biological pump is represented in climate models today. Researchers found that the "gold standard" equation used to calculate the pump's strength has a larger margin of error than previously thought, and that predictions of how much atmospheric carbon the ocean will pump down to various depths could be off by 10 to 15 parts per million.

Given that the world is currently emitting carbon dioxide into the atmosphere at an annual rate of about 2.5 parts per million, the team estimates that the new uncertainty translates to about a five-year error in climate target projections.

"This larger error bar might be critical if we want to stay within 1.5 degrees of warming targeted by the Paris Agreement," says Jonathan Lauderdale, a research scientist in MIT's Department of Earth, Atmospheric and Planetary Sciences. "If current models predict we have until 2040 to cut carbon emissions, we're expanding the uncertainty around that, to say maybe we now have until 2035, which could be quite a big deal."

Lauderdale and former MIT graduate student B.B. Cael, now at the National Oceanography Center in Southampton, U.K., have published their study in the journal Geophysical Research Letters.

Snow curve
The marine processes that contribute to the ocean's biological pump begin with phytoplankton, microscopic organisms that soak up carbon dioxide from the atmosphere as they grow. When they die, phytoplankton collectively sink through the water column as "marine snow," carrying that carbon with them.

"These particles rain down like white flaky snow that is all this dead stuff falling out of the surface ocean," Lauderdale says.

At various depths the particles are consumed by microbes, which convert the particles' organic carbon and respire it into the deep ocean in an inorganic, mineral form, in a process known as remineralization.

In the 1980s, researchers collected marine snow at locations and depths throughout the tropical Pacific. From these observations they generated a simple power law mathematical relationship - the Martin curve, named after team member John Martin - to describe the strength of the biological pump, and how much carbon the ocean can remineralize and sequester at various depths.

"The Martin curve is ubiquitous, and it's really the gold standard [used in many climate models today]," Lauderdale says.

But in 2018, Cael and co-author Kelsey Bisson showed that the power law derived to explain the Martin curve was not the only equation that could fit the observations. The power law is a simple mathematical relationship that assumes that particles fall faster with depth. But Cael found that several other mathematical relationships, each based on different mechanisms for how marine snow sinks and is remineralized, could also explain the data.

For instance, one alternative assumes that particles fall at the same rate no matter the depth, while another assumes that particles with heavy, less-consumable phytoplankton shells fall faster than those without.

"He found that you can't tell which curve is the right one, which is a bit troubling, because each curve has different mechanisms behind it," Lauderdale says. "In other words, researchers might be using the 'wrong' function to predict the strength of the biological pump. These discrepancies could snowball and impact climate projections."

A curve, reconsidered
In the new study, Lauderdale and Cael looked at how much difference it would make to estimates of carbon stored deep in the ocean if they changed the mathematical description of the biological pump.

They started with the same six alternative equations, or remineralization curves, that Cael had previously studied. The team looked at how climate models' predictions of atmospheric carbon dioxide would change if they were based on any of the six alternatives, versus the Martin curve's power law.

To make the comparison as statistically similar as possible, they first fit each alternative equation to the Martin curve. The Martin curve describes the how much marine snow reaches various depths through the ocean.

The researchers entered the data points from the curve into each alternative equation. They then ran each equation through the MITgcm, a general circulation model that simulates, among other processes, the flux of carbon dioxide between the atmosphere and the ocean.

The team ran the climate model forward in time to see how each alternative equation for the biological pump changed the model's estimates of carbon dioxide in the atmosphere, compared with the Martin curve's power law.

They found that the amount of carbon that the ocean is able to draw down and sequester from the atmosphere varies widely, depending on which mathematical description for the biological pump they used.

"The surprising part was that even small changes in the amount of remineralization or marine snow making it to different depths due to the different curves can lead to significant changes in atmospheric carbon dioxide," Lauderdale says.

The results suggest that the ocean's pumping strength, and the processes that govern how fast marine snow falls, are still an open question.

"We definitely need to make many more measurements of marine snow to break down the mechanisms behind what's going on," Lauderdale adds. "Because probably all these processes are relevant, but we really want to know which are driving carbon sequestration."


Related Links
Department of Earth, Atmospheric and Planetary Sciences
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
Blue-green algae blooms can release harmful toxins into the air
Washington DC (UPI) Apr 2, 2021
For the first time, scientists have observed the release of blue-green algae toxins into the air. Traces of the algal toxin anatoxin-a, or ATX, sometimes called the Very Fast Death Factor, were measured at a Massachusetts pond that frequently hosts large algal blooms. Scientists reported the discovery in a new paper, published Friday in the journal Lake and Reservoir Management. ATX is produced by cyanobacteria, a type of photosynthesizing bacteria. Though not technically algae, c ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
At least five dead as Bangladesh ferry sinks after collision

Vatican urges 'motherly care' for climate refugees

US military offers to help in blocked Suez Canal

Food ferried to isolated Australians as flood threat lingers

WATER WORLD
A new technique to synthesize superconducting materials

Hitachi buys US software firm GlobalLogic for $9.6 bn

NASA tests mixed reality for mission operations for exploration

Tires turned into graphene that makes stronger concrete

WATER WORLD
DR Congo to host Nile dam talks April 3-5

DR Congo hosts 'last chance' talks over contested Nile dam

Understanding hidden diversity on coral reefs key to conservation

Blue-green algae blooms can release harmful toxins into the air

WATER WORLD
Russia stages fresh military drills in the Arctic

Arctic mining takes centre stage in Greenland election

Melting ice sheets caused sea levels to rise up to 18 metres

NASA finds 2021 Arctic Winter Sea Ice Tied for 7th-lowest on record

WATER WORLD
Decellularized spinach serves as an edible platform for laboratory-grown meat

Canada rejects outright ban on bee-killing pesticides

Europe's heat and drought crop losses tripled in 50 years: study

Ixorigue: the solution for livestock management integrating Galileo and Copernicus

WATER WORLD
Florida homes evacuated as wastewater leak risks 'catastrophic' flood

NOAA study shows promise of forecasting meteotsunamis

Over 50 dead after flash floods in Indonesia and Timor Leste

Flood risk uncertainties assessed at the global scale

WATER WORLD
Nigerian air force dismisses Boko Haram claim over jet

Al-Shabaab attacks two key Somali bases: army

Central Mali deaths: What we know

Al-Shabaab calls for attacks on US, French interests in Djibouti

WATER WORLD
South African rock shelter artifacts show early humans colonized inland areas

Overhearing negative social remarks can inspire bias in children

Natural soundscapes boost health markers, lower stress

Bones of ancient Mayan ambassador reveal a privileged but difficult life









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.