. 24/7 Space News .
ICE WORLD
Antarctic sea ice may not cap carbon emissions as much as previously thought
by Jennifer Chu for MIT News
Boston MA (SPX) Oct 01, 2020

stock image only

The Southern Ocean surrounding Antarctica is a region where many of the world's carbon-rich deep waters can rise back up to the surface. Scientists have thought that the vast swaths of sea ice around Antarctica can act as a lid for upwelling carbon, preventing the gas from breaking through the ocean's surface and returning to the atmosphere.

However, researchers at MIT have now identified a counteracting effect that suggests Antarctic sea ice may not be as powerful a control on the global carbon cycle as scientists had suspected.

In a study published in the August issue of the journal Global Biogeochemical Cycles, the team has found that indeed, sea ice in the Southern Ocean can act as a physical barrier for upwelling carbon. But it can also act as a shade, blocking sunlight from reaching the surface ocean. Sunlight is essential for phytosynthesis, the process by which phytoplankton and other ocean microbes take up carbon from the atmosphere to grow.

The researchers found that when sea ice blocks sunlight, biological activity - and the amount of carbon that microbes can sequester from the atmosphere - decreases significantly. And surprisingly, this shading effect is almost equal and opposite to that of sea ice's capping effect. Taken together, both effects essentially cancel each other out.

"In terms of future climate change, the expected loss of sea ice around Antarctica may therefore not increase the carbon concentration in the atmosphere," says lead author Mukund Gupta, who carried out the research as a graduate student in MIT's Department of Earth, Atmospheric and Planetary Sciences (EAPS).

He emphasizes that sea ice does have other effects on the global climate, foremost through its albedo, or ability to reflect solar radiation.

"When the Earth warms up, it loses sea ice and absorbs more of this solar radiation, so in that sense, the loss of sea ice can accelerate climate change," Gupta says. "What we can say here is, sea ice changes may not have such a strong effect on carbon outgassing around Antarctica through this capping and shading effect."

Gupta's coauthors are EAPS Professor Michael "Mick" Follows, and EAPS research scientist Jonathan Lauderdale.

The role of ice
Each winter, wide swaths of the Southern Ocean freeze over, forming vast sheets of sea ice that extend out from Antarctica for millions of square miles. The role of Antarctic sea ice in regulating the climate and the carbon cycle has been much debated, though the prevailing theory has been that sea ice can act as a lid to keep carbon in the ocean from escaping to the atmosphere.

"This theory is mostly thought of in the context of ice ages, when the Earth was much colder and the atmospheric carbon was lower," Gupta says. "One of the theories explaining this low carbon concentration argues that because it was colder, a thick sea ice cover extended further into the ocean, blocking carbon exchanges with the atmosphere and effectively trapping it in the deep ocean."

Gupta and his colleagues wondered whether an effect other than capping may also be in play. In general, the researchers have sought to understand how various features and processes in the ocean interact with ocean biology such as phytoplankton. They assumed that there might be less biological activity as a result of sea ice blocking microbes' vital sunlight - but how strong would this shading effect be?

Equal and opposite
To answer that question, the researchers used the MITgcm, a global circulation model that simulates the many physical, chemical, and biological processes involved in the circulation of the atmosphere and ocean. With MITgcm, they simulated a vertical slice of the ocean spanning 3,000 kilometers wide and about 4,000 meters deep, and with conditions similar to today's Southern Ocean. They then ran the model multiple times, each time with a different concentration of sea ice.

"At 100 percent concentration, there are no leaks in the ice, and it's really compacted together, versus very low concentrations representing loose and sparse ice floes moving around," Gupta explains.

They set each simulation to one of three scenarios: one where only the capping effect is active, and sea ice is only influencing the carbon cycle by preventing carbon from leaking back out to the atmosphere; another where only the shading effect is active, and sea ice is only blocking sunlight from penetrating the ocean; and the last in which both capping and shading effects are in play.

For every simulation, the researchers observed how the conditions they set affected the overall carbon flux, or amount of carbon that escaped from the ocean to the atmosphere.

They found that capping and shading had opposite effects on the carbon cycle, reducing the amount of carbon to the atmosphere in the former case and increasing it in the latter, by equal amounts. In the scenarios where both effects were considered, one canceled the other out almost entirely, across a wide range of sea ice concentrations, leading to no significant change in the carbon flux. Only when sea ice was at its highest concentration did capping have the edge, with a decrease in carbon escaping to the atmosphere.

The results suggest that Antarctic sea ice may effectively trap carbon in the ocean, but only when that ice cover is very expansive and thick. Otherwise, it seems that sea ice's shading effect on the underlying organisms may counteract its capping effect.

"If one just considered the physics and the pure capping, or carbon barrier idea, that would be an incomplete way of thinking about it," Gupta says. "This shows that we need to understand more of the biology under sea ice and how it underlies this effect."

Research Report: "The effect of Antarctic sea ice on Southern Ocean carbon outgassing: Capping versus light attenuation"


Related Links
MIT News Office
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Antarctica to lift seas by metres per degree of warming: study
Paris (AFP) Sept 23, 2020
Raising Earth's average surface temperature another degree Celsius will lock in 2.5 metres of sea level rise from Antarctica alone and an extra three degrees see the frozen continent lift oceans 6.5 metres, scientists warned Wednesday. These devastating increases in the global waterline - enough to cripple coastal cities from Mumbai to Miami and displace hundreds of millions of people - would unfold over hundreds to thousands of years. But the man-made greenhouse gas emissions that could guar ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Russia reports 'non-standard' air leak on Space Station

Russia to launch two new modules to Space Station in April, September 2021

Astronauts close to finding source of air leak at Space Station

ISS Crew continues troubleshooting as tests isolate small leak

ICE WORLD
SpaceX improved Crew Dragon capsule for planned Oct. 31 launch

NASA, SpaceX to launch first Commercial Crew rotation mission to International Space Station

Space Force to start flying on reused SpaceX rockets

Blue Origin postpones Texas launch of experiments for NASA, universities

ICE WORLD
Study: Mars has four bodies of water underneath surface

The topography of the Jezero crater landing site of NASA's Mars 2020 mission

Could life exist deep underground on Mars

Perseverance will use x-rays to hunt fossils

ICE WORLD
NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

China sends nine satellites into orbit by sea launch

Chinese spacecraft launched mystery object into space before returning to Earth

ICE WORLD
Redcliffe Partners' Ukrainian Space Regulation Review

SpaceX postpones Starlink launch as thick clouds persist

Swarm announces pricing for world's lowest-cost satellite communications network

Machine-learning nanosats to inform global trade

ICE WORLD
18 SPCS now predicts debris-on-debris collisions in space, enhancing Space Domain Awareness for all

Radiation levels on Moon 2.6 times greater than ISS: study

Satcom to foster resilient digital systems

Arianespace to resume OneWeb constellation deployment

ICE WORLD
Search for New Worlds at Home with NASA's Planet Patrol Project

CHEOPS space telescope makes ultra-precise temperature and size measurements of an unusual giant planet

Let them eat rocks

Evolution of radio-resistance is more complicated than previously thought

ICE WORLD
SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission

Astronomers characterize Uranian moons using new imaging analysis

Jupiter's moons could be warming each other









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.