Magnaporthe oryzae nucleoside diphosphate kinase is required for metabolic homeostasis and redox-mediated host innate immunity suppression

Mol Microbiol. 2020 Nov;114(5):789-807. doi: 10.1111/mmi.14580. Epub 2020 Sep 16.

Abstract

The fungus Magnaporthe oryzae causes blast, the most devastating disease of cultivated rice. After penetrating the leaf cuticle, M. oryzae grows as a biotroph in intimate contact with living rice epidermal cells before necrotic lesions develop. Biotrophic growth requires maintaining metabolic homeostasis while suppressing plant defenses, but the metabolic connections and requirements involved are largely unknown. Here, we characterized the M. oryzae nucleoside diphosphate kinase-encoding gene NDK1 and discovered it was essential for facilitating biotrophic growth by suppressing the host oxidative burst-the first line of plant defense. NDK enzymes reversibly transfer phosphate groups from tri- to diphosphate nucleosides. Correspondingly, intracellular nucleotide pools were perturbed in M. oryzae strains lacking NDK1 through targeted gene deletion, compared to WT. This affected metabolic homeostasis: TCA, purine and pyrimidine intermediates, and oxidized NADP+ , accumulated in Δndk1. cAMP and glutathione were depleted. ROS accumulated in Δndk1 hyphae. Functional appressoria developed on rice leaf sheath surfaces, but Δndk1 invasive hyphal growth was restricted and redox homeostasis was perturbed, resulting in unsuppressed host oxidative bursts that triggered immunity. We conclude Ndk1 modulates intracellular nucleotide pools to maintain redox balance via metabolic homeostasis, thus quenching the host oxidative burst and suppressing rice innate immunity during biotrophy.

Keywords: Magnaporthe oryzae; biotrophy; innate immunity; nucleoside diphosphate kinase; one-carbon metabolism; redox.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Ascomycota / genetics
  • Ascomycota / metabolism*
  • Fungal Proteins / metabolism
  • Homeostasis
  • Host-Pathogen Interactions
  • Hyphae / growth & development
  • Immunity, Innate / genetics
  • Nucleoside-Diphosphate Kinase / genetics
  • Nucleoside-Diphosphate Kinase / metabolism*
  • Oryza / microbiology
  • Oxidation-Reduction
  • Plant Diseases / microbiology

Substances

  • Fungal Proteins
  • Nucleoside-Diphosphate Kinase

Supplementary concepts

  • Pyricularia oryzae