Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster

Nucleic Acids Res. 2019 Jul 26;47(13):6842-6857. doi: 10.1093/nar/gkz490.

Abstract

Although transposable elements are an important source of regulatory variation, their genome-wide contribution to the transcriptional regulation of stress-response genes has not been studied yet. Stress is a major aspect of natural selection in the wild, leading to changes in the transcriptional regulation of a variety of genes that are often triggered by one or a few transcription factors. In this work, we take advantage of the wealth of information available for Drosophila melanogaster and humans to analyze the role of transposable elements in six stress regulatory networks: immune, hypoxia, oxidative, xenobiotic, heat shock, and heavy metal. We found that transposable elements were enriched for caudal, dorsal, HSF, and tango binding sites in D. melanogaster and for NFE2L2 binding sites in humans. Taking into account the D. melanogaster population frequencies of transposable elements with predicted binding motifs and/or binding sites, we showed that those containing three or more binding motifs/sites are more likely to be functional. For a representative subset of these TEs, we performed in vivo transgenic reporter assays in different stress conditions. Overall, our results showed that TEs are relevant contributors to the transcriptional regulation of stress-response genes.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Animals
  • Animals, Genetically Modified
  • Aryl Hydrocarbon Receptor Nuclear Translocator / metabolism
  • Binding Sites
  • Chromatin Immunoprecipitation
  • DNA Transposable Elements / genetics*
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism*
  • Drosophila melanogaster / drug effects
  • Drosophila melanogaster / embryology
  • Drosophila melanogaster / genetics*
  • Drosophila melanogaster / immunology
  • Female
  • Gene Expression Regulation / genetics*
  • Gene Regulatory Networks
  • Genes, Insect*
  • Humans
  • NF-E2-Related Factor 2 / metabolism
  • Protein Binding
  • Species Specificity
  • Stress, Physiological / genetics*
  • Transcription Factors / metabolism
  • Transcription, Genetic / genetics*

Substances

  • DNA Transposable Elements
  • Drosophila Proteins
  • NF-E2-Related Factor 2
  • NFE2L2 protein, human
  • Transcription Factors
  • tgo protein, Drosophila
  • Aryl Hydrocarbon Receptor Nuclear Translocator