Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of immune responses by tuft cells

Abstract

Tuft cells are rare, secretory epithelial cells that generated scant immunological interest until contemporaneous reports in 2016 linked tuft cells with type 2 immunity in the small intestine. Tuft cells have the capacity to produce an unusual spectrum of biological effector molecules, including IL-25, eicosanoids implicated in allergy (such as cysteinyl leukotrienes and prostaglandin D2) and the neurotransmitter acetylcholine. In most cases, the extracellular signals controlling tuft cell effector function are unknown, but signal transduction is thought to proceed via canonical, G protein-coupled receptor-dependent pathways involving components of the signalling pathway used by type II taste bud cells to sense sweet, bitter and umami compounds. Tuft cells are ideally positioned as chemosensory sentinels that can detect and relay information from diverse luminal substances via what appear to be stereotyped outputs to initiate both positive and aversive responses through populations of immune and neuronal cells. Despite recent insights, numerous questions remain regarding tuft cell lineage, diversity and effector mechanisms and how tuft cells interface with the immunological niche in the tissues where they reside.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The small intestinal tuft cell–ILC2 circuit.
Fig. 2: GPCR signalling in tuft cells and tuft-like cells.
Fig. 3: Biosynthetic pathways for putative tuft cell effector molecules.

Similar content being viewed by others

References

  1. von Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221–225 (2016). This study shows that tuft cells are the major source of IL-25 and is the first description of the tuft cell–ILC2 circuit.

    Google Scholar 

  2. Howitt, M. R. et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351, 1329–1333 (2016). In this study the protist Tritrichomonas is shown to potently stimulate the TRPM5-dependent tuft cell–ILC2 circuit.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gerbe, F. et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230 (2016). This study shows that tuft cell deficiency in Pou2f3 −/− mice abrogates helminth-induced type 2 responses in the small intestine.

    CAS  PubMed  Google Scholar 

  4. Sbarbati, A. & Osculati, F. A new fate for old cells: brush cells and related elements. J. Anat. 206, 349–358 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sato, A. Tuft cells. Anat. Sci. Int. 82, 187–199 (2007).

    CAS  PubMed  Google Scholar 

  6. von Moltke, J. in Physiology of the Gastrointestinal Tract 6th edn (ed. Said, H.) 721–733 (Academic Press, 2018).

  7. Bezençon, C. et al. Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J. Comp. Neurol. 509, 514–525 (2008). This article presents the first expression profiling of tuft cells using a Trpm5 –GFP reporter, revealing chemosensory–immune–neuronal programmes.

    PubMed  Google Scholar 

  8. O’Leary, C. E., Schneider, C. & Locksley, R. M. Tuft cells — systemically dispersed sensory epithelia integrating immune and neural circuitry. Annu. Rev. Immunol. 37, 47–72 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gerbe, F. et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J. Cell Biol. 192, 767–780 (2011). This paper presents a detailed characterization of small intestine tuft cell markers and development.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fletcher, R. B. et al. Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell Stem Cell 20, 817–830 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Reid, L. et al. The mysterious pulmonary brush cell: a cell in search of a function. Am. J. Respir. Crit. Care Med. 172, 136–139 (2005).

    PubMed  PubMed Central  Google Scholar 

  13. Sukumaran, S. K. et al. Whole transcriptome profiling of taste bud cells. Sci. Rep. 7, 7595 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Matsumoto, I., Ohmoto, M., Narukawa, M., Yoshihara, Y. & Abe, K. Skn-1a (Pou2f3) specifies taste receptor cell lineage. Nat. Neurosci. 14, 685–687 (2011). This article provides the first description of POU2F3 dependency in type II taste bud cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo, X. C. et al. Infection by the parasitic helminth Trichinella spiralis activates a Tas2r-mediated signaling pathway in intestinal tuft cells. Proc. Natl Acad. Sci. USA 116, 5564–5569 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bornstein, C. et al. Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature 559, 622–626 (2018).

    CAS  PubMed  Google Scholar 

  17. Miller, C. N. et al. Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature 559, 627–631 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nadjsombati, M. S. et al. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity 49, 33–41 (2018). This study presents an RNA sequencing profiling of tuft cells and identification of Tritrichomonas -induced succinate–SUCNR1-mediated activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, Y. H. et al. POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes Dev. 32, 915–928 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schneider, C. et al. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell 174, 271–284 (2018). Tritrichomonas -derived succinate triggers a tuft cell–ILC2 circuit involved in adaptive remodelling and concomitant immunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lei, W. et al. Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. Proc. Natl Acad. Sci. USA 115, 5552–5557 (2018). This study identifies succinate–SUCNR1-mediated tuft cell activation by succinate-producing microbiota.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Moor, A. E. et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175, 1156–1167 (2018).

    CAS  PubMed  Google Scholar 

  25. Liu, S. et al. Members of bitter taste receptor cluster Tas2r143/Tas2r135/Tas2r126 are expressed in the epithelium of murine airways and other non-gustatory tissues. Front. Physiol. 8, 849 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Hoover, B. et al. The intestinal tuft cell nanostructure in 3D. Sci. Rep. 7, 1652 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Rosenbaum, D. M., Rasmussen, S. G. & Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Allen, J. A. & Roth, B. L. Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 51, 117–144 (2011).

    CAS  PubMed  Google Scholar 

  29. Tan, J. K., McKenzie, C., Marino, E., Macia, L. & Mackay, C. R. Metabolite-sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annu. Rev. Immunol. 35, 371–402 (2017).

    CAS  PubMed  Google Scholar 

  30. Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Muller, M. et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Murphy, M. P. & O’Neill, L. A. J. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell 174, 780–784 (2018).

    CAS  PubMed  Google Scholar 

  33. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mills, E. L. et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560, 102–106 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Husted, A. S., Trauelsen, M., Rudenko, O., Hjorth, S. A. & Schwartz, T. W. GPCR-mediated signaling of metabolites. Cell Metab. 25, 777–796 (2017).

    CAS  PubMed  Google Scholar 

  36. Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, S. et al. Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis. PLOS ONE 9, e97501 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Roper, S. D. & Chaudhari, N. Taste buds: cells, signals and synapses. Nat. Rev. Neurosci. 18, 485–497 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Soultanova, A. et al. Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131. Int. Immunopharmacol. 29, 143–147 (2015).

    CAS  PubMed  Google Scholar 

  40. Voigt, A. et al. Cre-mediated recombination in Tas2r131 cells-a unique way to explore bitter taste receptor function inside and outside of the taste system. Chem. Senses 40, 627–639 (2015).

    CAS  PubMed  Google Scholar 

  41. Voigt, A. et al. Genetic labeling of Tas1r1 and Tas2r131 taste receptor cells in mice. Chem. Senses 37, 897–911 (2012).

    CAS  PubMed  Google Scholar 

  42. Lossow, K. et al. Comprehensive analysis of mouse bitter taste receptors reveals different molecular receptive ranges for orthologous receptors in mice and humans. J. Biol. Chem. 291, 15358–15377 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tizzano, M. et al. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc. Natl Acad. Sci. USA 107, 3210–3215 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Saunders, C. J., Christensen, M., Finger, T. E. & Tizzano, M. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proc. Natl Acad. Sci. USA 111, 6075–6080 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Krasteva, G. et al. Cholinergic chemosensory cells in the trachea regulate breathing. Proc. Natl Acad. Sci. USA 108, 9478–9483 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, R. J. et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J. Clin. Invest. 124, 1393–1405 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, R. J. et al. Bacterial d-amino acids suppress sinonasal innate immunity through sweet taste receptors in solitary chemosensory cells. Sci. Signal. 10, eaam7703 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Shah, A. S., Ben-Shahar, Y., Moninger, T. O., Kline, J. N. & Welsh, M. J. Motile cilia of human airway epithelia are chemosensory. Science 325, 1131–1134 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, R. J. et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J. Clin. Invest. 122, 4145–4159 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Philippaert, K. et al. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nat. Commun. 8, 14733 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Eberle, J. A., Widmayer, P. & Breer, H. Receptors for short-chain fatty acids in brush cells at the “gastric groove”. Front. Physiol. 5, 152 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. Ribeiro, F. M. et al. The “ins” and “outs” of the high-affinity choline transporter CHT1. J. Neurochem. 97, 1–12 (2006).

    CAS  PubMed  Google Scholar 

  53. Girard, E. et al. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice. Life Sci. 80, 2380–2385 (2007).

    CAS  PubMed  Google Scholar 

  54. Lockridge, O., Norgren, R. B. Jr., Johnson, R. C. & Blake, T. A. Naturally occurring genetic variants of human acetylcholinesterase and butyrylcholinesterase and their potential impact on the risk of toxicity from cholinesterase inhibitors. Chem. Res. Toxicol. 29, 1381–1392 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schutz, B., Damadzic, R., Weihe, E. & Eiden, L. E. Identification of a region from the human cholinergic gene locus that targets expression of the vesicular acetylcholine transporter to a subset of neurons in the medial habenular nucleus in transgenic mice. J. Neurochem. 87, 1174–1183 (2003).

    PubMed  Google Scholar 

  56. Nadorp, B. & Soreq, H. Predicted overlapping microRNA regulators of acetylcholine packaging and degradation in neuroinflammation-related disorders. Front. Mol. Neurosci. 7, 9 (2014).

    PubMed  PubMed Central  Google Scholar 

  57. Deckmann, K. et al. Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. Proc. Natl Acad. Sci. USA 111, 8287–8292 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dando, R. & Roper, S. D. Acetylcholine is released from taste cells, enhancing taste signalling. J. Physiol. 590, 3009–3017 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schutz, B. et al. Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Front. Physiol. 6, 87 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Bosmans, G. et al. Cholinergic modulation of type 2 immune responses. Front. Immunol. 8, 1873 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Finger, T. E. et al. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310, 1495–1499 (2005).

    CAS  PubMed  Google Scholar 

  62. Ma, Z. et al. CALHM3 is essential for rapid ion channel-mediated purinergic neurotransmission of GPCR-mediated tastes. Neuron 98, 547–561 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Taruno, A. et al. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495, 223–226 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Workman, A. D. et al. CALHM1-mediated ATP release and ciliary beat frequency modulation in nasal epithelial cells. Sci. Rep. 7, 6687 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Di Virgilio, F., Sarti, A. C. & Grassi, F. Modulation of innate and adaptive immunity by P2X ion channels. Curr. Opin. Immunol. 52, 51–59 (2018).

    PubMed  Google Scholar 

  66. Fort, M. M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    CAS  PubMed  Google Scholar 

  67. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    CAS  PubMed  Google Scholar 

  68. Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Song, X., He, X., Li, X. & Qian, Y. The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell. Mol. Immunol. 13, 418–431 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ricardo-Gonzalez, R. R. et al. Tissue signals imprint ILC2 identity with anticipatory function. Nat. Immunol. 19, 1093–1099 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang, Y. et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359, 114–119 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Terashima, A. et al. A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J. Exp. Med. 205, 2727–2733 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Watanabe, N. et al. Hassall’s corpuscles instruct dendritic cells to induce CD4 + CD25 + regulatory T cells in human thymus. Nature 436, 1181–1185 (2005).

    CAS  PubMed  Google Scholar 

  75. Varricchi, G. et al. Thymic stromal lymphopoietin isoforms, inflammatory disorders, and cancer. Front. Immunol. 9, 1595 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. Harizi, H. The immunobiology of prostanoid receptor signaling in connecting innate and adaptive immunity. Biomed. Res. Int. 2013, 683405 (2013).

    PubMed  PubMed Central  Google Scholar 

  77. Singh, R. K., Gupta, S., Dastidar, S. & Ray, A. Cysteinyl leukotrienes and their receptors: molecular and functional characteristics. Pharmacology 85, 336–349 (2010).

    CAS  PubMed  Google Scholar 

  78. Shimura, C. et al. Dendritic cells express hematopoietic prostaglandin D synthase and function as a source of prostaglandin D2 in the skin. Am. J. Pathol. 176, 227–237 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wojno, E. D. et al. The prostaglandin D2 receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol. 8, 1313–1323 (2015).

    PubMed  Google Scholar 

  80. Xue, L. et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133, 1184–1194 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chang, J. E., Doherty, T. A., Baum, R. & Broide, D. Prostaglandin D2 regulates human type 2 innate lymphoid cell chemotaxis. J. Allergy Clin. Immunol. 133, 899–901 (2014).

    CAS  PubMed  Google Scholar 

  82. Gonem, S. et al. Fevipiprant, a prostaglandin D2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: a single-centre, randomised, double-blind, parallel-group, placebo-controlled trial. Lancet Respir. Med. 4, 699–707 (2016).

    CAS  PubMed  Google Scholar 

  83. von Moltke, J. et al. Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s. J. Exp. Med. 214, 27–37 (2017).

    Google Scholar 

  84. Miyata, N. et al. Microbial sensing by intestinal myeloid cells controls carcinogenesis and epithelial differentiation. Cell Rep. 24, 2342–2355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bankova, L. G. et al. The cysteinyl leukotriene 3 receptor regulates expansion of IL-25-producing airway brush cells leading to type 2 inflammation. Sci. Immunol. 3, eaat9453 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. Kokrashvili, Z. et al. Release of endogenous opioids from duodenal enteroendocrine cells requires Trpm5. Gastroenterology 137, 598–606 (2009).

    PubMed  Google Scholar 

  87. Delgiorno, K. E. et al. Identification and manipulation of biliary metaplasia in pancreatic tumors. Gastroenterology 146, 233–244 (2014).

    CAS  PubMed  Google Scholar 

  88. Morais, S. The physiology of taste in fish: potential implications for feeding stimulation and gut chemical sensing. Rev. Fish. Sci. Aquac. 25, 133–149 (2017).

    Google Scholar 

  89. Tantin, D. Oct transcription factors in development and stem cells: insights and mechanisms. Development 140, 2857–2866 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Malik, V., Zimmer, D. & Jauch, R. Diversity among POU transcription factors in chromatin recognition and cell fate reprogramming. Cell. Mol. Life Sci. 75, 1587–1612 (2018).

    CAS  PubMed  Google Scholar 

  91. Yamashita, J., Ohmoto, M., Yamaguchi, T., Matsumoto, I. & Hirota, J. Skn-1a/Pou2f3 functions as a master regulator to generate Trpm5-expressing chemosensory cells in mice. PLOS ONE 12, e0189340 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Gracz, A. D. et al. Sox4 promotes Atoh1-independent intestinal secretory differentiation toward tuft and enteroendocrine fates. Gastroenterology 155, 1508–1523 (2018).

    CAS  PubMed  Google Scholar 

  93. Bjerknes, M. et al. Origin of the brush cell lineage in the mouse intestinal epithelium. Dev. Biol. 362, 194–218 (2012).

    CAS  PubMed  Google Scholar 

  94. Lee, J. et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J. Biol. Chem. 276, 1660–1664 (2001).

    CAS  PubMed  Google Scholar 

  95. Han, Q. et al. Characterization of Lamprey IL-17 family members and their receptors. J. Immunol. 195, 5440–5451 (2015).

    CAS  PubMed  Google Scholar 

  96. Buckley, K. M. et al. IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva. eLife 6, 860 (2017).

    Google Scholar 

  97. Swamy, M. & Hayday, A. Provocative exhibits at the Seventeen Gallery. Nat. Immunol. 12, 1131–1133 (2011).

    CAS  PubMed  Google Scholar 

  98. Orchard, R. C. et al. Discovery of a proteinaceous cellular receptor for a norovirus. Science 353, 933–936 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wilen, C. B. et al. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science 360, 204–208 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chudnovskiy, A. et al. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell 167, 444–456 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kabata, H., Moro, K. & Koyasu, S. The group 2 innate lymphoid cell (ILC2) regulatory network and its underlying mechanisms. Immunol. Rev. 286, 37–52 (2018).

    CAS  PubMed  Google Scholar 

  102. Lund, S. J. et al. Leukotriene C4 potentiates IL-33-induced group 2 innate lymphoid cell activation and lung inflammation. J. Immunol. 199, 1096–1104 (2017).

    CAS  PubMed  Google Scholar 

  103. Kuga, D. et al. Tyrosine phosphorylation of an actin-binding protein girdin specifically marks tuft cells in human and mouse gut. J. Histochem. Cytochem. 65, 347–366 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Rhodin, J. & Dalhamn, T. Electron microscopy of the tracheal ciliated mucosa in rat. Z. Zellforsch. Mikrosk. Anat. 44, 345–412 (1956).

    CAS  PubMed  Google Scholar 

  105. Finger, T. E. et al. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc. Natl Acad. Sci. USA 100, 8981–8986 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Genovese, F. & Tizzano, M. Microvillous cells in the olfactory epithelium express elements of the solitary chemosensory cell transduction signaling cascade. PLOS ONE 13, e0202754 (2018).

    PubMed  PubMed Central  Google Scholar 

  107. Ogura, T. et al. Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells. J. Neurophysiol. 106, 1274–1287 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Fu, Z., Ogura, T., Luo, W. & Lin, W. ATP and odor mixture activate TRPM5-expressing microvillous cells and potentially induce acetylcholine release to enhance supporting cell endocytosis in mouse main olfactory epithelium. Front. Cell. Neurosci. 12, 71 (2018).

    PubMed  PubMed Central  Google Scholar 

  109. Jarvi, O. & Keyrilainen, O. On the cellular structures of the epithelial invasions in the glandular stomach of mice caused by intramural application of 20-methylcholantren. Acta Pathol. Microbiol. Scand. Suppl. 39, 72–73 (1956).

    CAS  PubMed  Google Scholar 

  110. Luciano, L., Castellucci, M. & Reale, E. The brush cells of the common bile duct of the rat. This section, freeze-fracture and scanning electron microscopy. Cell Tissue Res. 218, 403–420 (1981).

    CAS  PubMed  Google Scholar 

  111. Panneck, A. R. et al. Cholinergic epithelial cell with chemosensory traits in murine thymic medulla. Cell Tissue Res. 358, 737–748 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for comments from laboratory members. This work was supported by funds from the US National Institutes of Health, the Howard Hughes Medical Institute, the Strategic Asthma Basic Research Center at the University of California–San Francisco (UCSF) and the Australian National Health and Medical Research Council to R.M.L. C.S. is supported by fellowships from the Swiss National Science Foundation. C.E.O. is supported by the Gastroenterology T32 Training Grant at UCSF.

Competing interests

The authors declare no competing interests.

Reviewer information

Nature Reviews Immunology thanks N. Cohen and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Richard M. Locksley.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Transient receptor potential cation channel

Calcium-gated, inwardly rectifying cation channel that mediates membrane depolarization downstream of canonical taste receptors and other G protein-coupled receptors involved in tuft cell activation.

Group 2 innate lymphoid cells

(ILC2s). Innate immune cells producing IL-5 and IL-13 with early roles in type 2 immune responses.

Hassall’s corpuscles

Cornified bodies of epithelial cells in the thymic medulla, which were previously described to be a site of thymic stromal lymphopoietin (TSLP) expression and important for the instruction of dendritic cells to induce regulatory T cell differentiation.

G protein-coupled receptor

(GPCR). GPCRs are a large group of receptors that can bind to a diverse set of molecules (such as metabolites, chemokines, hormones and neurotransmitters) and can induce intracellular signalling by coupling to heterotrimeric GTP-regulated signalling proteins.

Krebs cycle

Also known as the tricarboxylic acid cycle and citric acid cycle. This cycle is a series of enzymatic reactions used in aerobic metabolism to release energy through the oxidation of acetyl-CoA to yield ATP and carbon dioxide.

Umami tastants

Also known as savoury taste. One of the five basic tastes. Umami stimuli, such as the prototypical example monosodium glutamate, are sensed by multiple taste receptors expressed by type II taste cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, C., O’Leary, C.E. & Locksley, R.M. Regulation of immune responses by tuft cells. Nat Rev Immunol 19, 584–593 (2019). https://doi.org/10.1038/s41577-019-0176-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0176-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing