Trade-offs in female signal apparency to males offer alternative anti-harassment strategies for colour polymorphic females

J Evol Biol. 2015 Apr;28(4):931-43. doi: 10.1111/jeb.12623. Epub 2015 Apr 3.

Abstract

Colour polymorphisms are known to influence receiver behaviour, but how they affect a receiver's ability to detect and recognize individuals in nature is usually unknown. I hypothesized that polymorphic female damselflies represent an evolutionary stable strategy, maintained by trade-offs between the relative apparency of morphs to male receivers. Using field experiments on Enallagma hageni and focal studies of E. hageni and Enallagma boreale, I tested for the first time the predictions that (i) green heteromorphs and blue andromorphs gain differential protection from sexual harassment via background crypsis and sexual mimicry, respectively, and (ii) female morphs behaviourally optimize their signal apparency to mate-searching males. First, based on male reactions elicited by females, against a high-contrast background, the two morphs did not differ in being detected by males, and once detected, they did not differ in being recognized (eliciting sexual reactions). However, on green ferns, heteromorphs were less likely to be detected (elicited only fly-bys) than andromorphs, but once detected, the morphs did not differ in being recognized. In contrast, when perched on a dowel with two male signal distractors, andromorphs were detected less often, and once detected, they were recognized less often than heteromorphs. Second, in fields where females foraged, andromorphs perched higher on vegetation than heteromorphs and were more often in the vicinity of males. Neither harassment rates nor evasive behaviours differed between morphs. Males aggregated in high density near shore where solitary females were rare. Equilibrium frequencies of these and other colour morphs should reflect the relative ease with which receivers detect and recognize them in the context where they are encountered.

Keywords: Enallagma; Odonata; crypsis; damselfly; mimicry; sexual conflict; sexual recognition; signal detection.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Ecosystem
  • Female
  • Male
  • Michigan
  • Odonata / physiology*
  • Pigmentation
  • Polymorphism, Genetic*
  • Sexual Behavior, Animal / physiology*

Associated data

  • Dryad/10.5061/dryad.221MV